首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cementation is produced by mixing a certain amount of cement with the saturated clay. The purpose of this paper is to model the cementation effect on the mechanical behavior of cement-treated clay. A micromechanical stress-strain model is developed considering explicitly the cementation at inter-cluster contacts. The inter-cluster bonding and debonding during mechanical loading are introduced in two ways: an additional cohesion in the shear sliding and a higher yield stress in normal compression. The model is used to simulate isotropic compression and undrained triaxial tests under various confining stresses on cement-treated Singapore clay with various cement contents. The applicability of the present model is evaluated through comparisons between numerical and experimental results. The evolution of local stresses and local strains in inter-cluster planes is discussed in order to explain the induced anisotropy due to debonding at contact level under the applied loads.  相似文献   

2.
A new higher-order continuum model is proposed by considering the coupling and lane changing effects of the vehicles on two adjacent lanes. A stability analysis of the proposed model provides the conditions that ensure its linear stability. Issues related to lane changing, shock waves and rarefaction waves, local clustering and phase transition are also investigated with numerical experiments. The simulation results show that the proposed model is capable of providing explanations to some particular traffic phenomena commonly observable in real traffic flows.  相似文献   

3.
A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3fl here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.  相似文献   

4.
The purpose of this paper is to investigate the stress-dependent behaviour of clay during drained and undrained shearing by means of a micromechanical approach. A new micromechanical stress–strain model is developed for clay using the approach developed in earlier studies by Chang and Hicher [Chang, C.S., Hicher, P.Y., 2005. An elastic–plastic model for granular materials with microstructural consideration. International Journal of Solids and Structures 42(14), 4258–4277]. In order to model the extension test on a K0 consolidated sample, a formulation is developed to account for the stress reversal on a contact plane. The model is then used to simulate numerous stress-path tests on Lower Cromer Till and kaolin clay, including triaxial compression and extension tests, under both undrained and drained conditions, with different K0 consolidation, and different over-consolidation ratios. The applicability of the present model is evaluated through comparisons between the predicted and the measured results. The evolution of local stresses and local strains at inter-particle planes are discussed in order to explain the stress-induced anisotropy due to externally applied load. All simulations have demonstrated that the proposed micromechanical approach is capable of modelling the stress-induced anisotropy and other major features of the complex behaviour in clay.  相似文献   

5.
As an extension of the wavelet approach to vibration control of piezoelectric beam-type plates developed earlier by the authors,this paper proposes a hybrid activepassive control strategy for suppressing vibrations of laminated rectangular plates bonded with distributed piezoelectric sensors and actuators via thin viscoelastic bonding layers.Owing to the low-pass filtering property of scaling function transform in orthogonal wavelet theory,this waveletbased control method has the ability to automatically filter out noise-like signal in the feedback control loop,hence reducing the risk of residual coupling effects which are usually the source of spillover instability.Moreover,the existence of thin viscoelastic bonding layers can further improve robustness and reliability of the system through dissipating the energy of any other possible noise induced partially by numerical errors during the control process.A simulation procedure based on an advanced wavelet-Galerkin technique is suggested to realize the hybrid active-passive control process.Numerical results demonstrate the efficiency of the proposed approach.  相似文献   

6.
A linear semi-continuum model with discrete atomic layers in the thickness direction was developed to investigate the bending behaviors of ultra-thin beams with nanoscale thickness.The theoretical results show that the deflection of an ultra-thin beam may be enhanced or reduced due to different relaxation coefficients.If the relaxation coefficient is greater/less than one,the deflection of micro/nano-scale structures is enhanced/reduced in comparison with macro-scale structures.So,two opposite types of size-dependent behaviors are observed and they are mainly caused by the relaxation coefficients.Comparisons with the classical continuum model,exact nonlocal stress model and finite element model (FEM) verify the validity of the present semi-continuum model.In particular,an explanation is proposed in the debate whether the bending stiffness of a micro/nano-scale beam should be greater or weaker as compared with the macro-scale structures.The characteristics of bending stiffness are proved to be associated with the relaxation coefficients.  相似文献   

7.
A dynamic spherical cavity-expansion penetration model is suggested herein to predict the penetration and perforation of concrete targets struck normally by ogivalnosed projectiles.Shear dilatancy as well as compressibility of the material in comminuted region are considered in the paper by introducing a dilatant-kinematic relation.A procedure is first presented to compute the radial stress at the cavity surface and then a numerical method is used to calculate the results of penetration and perforation with friction being taken into account.The influences of various target parameters such as shear strength,bulk modulus,density,Poisson’s ratio and tensile strength on the depth of penetration are delineated.It is shown that the model predictions are in good agreement with available experimental data.It is also shown that the shear strength plays a dominant role in the target resistance to penetration.  相似文献   

8.
The wrinkling of a stiff thin film bonded on a soft elastic layer and subjected to an applied or residual compressive stress is investigated in the present paper. A three-dimensional theoretical model is presented to predict the buckling and postbuckling behavior of the film. We obtained the analytical solutions for the critical buckling condition and the postbuckling morphology of the film. The effects of the thicknesses and elastic properties of the film and the soft layer on the characteristic wrinkling wavelength are examined. It is found that the critical wrinkling condition of the thin film is sensitive to the compressibility and thickness of the soft layer, and its wrinkling amplitude depends on the magnitude of the applied or residual in-plane stress. The bonding condition between the soft layer and the rigid substrate has a considerable influence on the buckling of the thin film, and the relative sliding at the interface tends to destabilize the system.  相似文献   

9.
The behavior of a precracked bi-material structure interface under given static and dynamic axial loading is an interest object in the present paper.Firstly,it is shown that the shear-lag model is a proper tool to analyze a delamination process in a precracked bi-material structure undergoing static loading.Secondly,the"shear-lag model"is applied to the structure under dynamic loading.To solve the problem for an interface delamination of the structure and to determine the debond length along the interface,our own 2D boundary element method(BEM)code is proposed in the case of static loading,and the shear-lag model together with the Laplace transforms and half-analytical calculations are used in the case of dynamic loading.The interface layer is assumed as a very thin plate compared with the other two.The parametric(geometric and elastic)analysis of the debond length and interface shear stress is done. The results from the 2D BEM code proved the validity of analytical solutions to the shear-lag model.In the dynamic case,the influence of loading characteristics,i.e.,frequencies and amplitude fluctuations on the shear stress and the value of debond length for an interval of time,is discussed. The analysis of the obtained results is illustrated by an example of the modern ceramic-metal composite,namely cermet, and depicted in figures.  相似文献   

10.
In spite of ill-effects of high heel shoes, they are widely used for women. Hence, it is essential to understand the load transfer biomechanics in order to design better fit and comfortable shoes. In this study, both experimental measurement and finite element analysis were used to evaluate the biomechanical effects of heel height on foot load transfer. A controlled experiment was conducted using custom-designed platforms. Under different weight-bearing conditions, peak plantar pressure, contact area and center of pressure were analyzed. A three-dimensional finite element foot model was used to simulate the high-heel support and to predict the internal stress distributions and deformations for different heel heights. Results from both experiment and model indicated that heel elevations had significant effects on all variables. When heel elevation increased, the center of pressure shifted from the midfoot region to the forefoot region, the contact area was reduced by 26% from 0 to 10.2 cm heel and the internal stress of foot bones increased. Prediction results also showed that the strain and total tension force of plantar fascia was minimum at 5.1 cm heel condition. This study helps to better understand the biomechanical behavior of foot, and to provide better suggestions for design parameters of high heeled shoes.  相似文献   

11.
With the two-scale expansion technique proposed by Yoshizawa,the turbulent fluctuating field is expanded around the isotropic field.At a low-order two-scale expansion,applying the mode coupling approximation in the Yakhot-Orszag renormalization group method to analyze the fluctuating field,the Reynolds-average terms in the Reynolds stress transport equation,such as the convective term,the pressure-gradient-velocity correlation term and the dissipation term,are modeled.Two numerical examples:turbulent flow past a backward-facing step and the fully developed flow in a rotating channel,are presented for testing the efficiency of the proposed second-order model.For these two numerical examples,the proposed model performs as well as the Gibson-Launder (GL) model,giving better prediction than the standard k-ε model,especially in the abilities to calculate the secondary flow in the backward-facing step flow and to capture the asymmetric turbulent structure caused by frame rotation.  相似文献   

12.
An eigenvalue method considering the membrane vibration of wrinkling out-of-plane deformation is introduced, and the stress distributing rule in membrane wrinkled area is analyzed. A dynamic analytical model of rectangular shear wrinkled membrane and its numerical analysis approach are also developed. Results indicate that the stress in wrinkled area is not uniform, i.e. it is larger in wrinkling wave peaks along wrinkles and two ends of wrinkle in vertical direction. Vibration modes of wrinkled membrane are strongly correlated with the wrinkling configurations. The rigidity is larger due to the heavier stress in the part of wrinkling wave peaks. Therefore, wave peaks are always located at the node lines of vibration mode. The vibration frequency obviously increases with the vibration of wave peaks.  相似文献   

13.
The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.  相似文献   

14.
Imperfect bonding between the constitutive components can greatly affect the properties of the composite structures.An asymptotic analysis of different types of imperfect interfaces arising in the problem of 2D fibrereinforced composite materials are proposed.The performed study is based on the asymptotic reduction of the governing biharmonic problem into two harmonic problems.All solutions are obtained in a closed analytical form.The obtained results can be used for the calculation of pull-out and pushout tests,as well as for the investigation of the fracture of composite materials.  相似文献   

15.
Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.  相似文献   

16.
A two-stage damage detection approach is proposed and experimentally demonstrated on a complicated spatial model structure with a limited number of measurements. In the experiment,five known damage patterns,including 3 brace damage cases and 2 joint damage cases,were simulated by removing braces and weakening beam-column connections in the structure. The limited acceleration response data generated by hammer impact were used for system identification,and modal parameters were extracted by using the eigensystem realization algorithm. In the first stage,the possible damaged locations are determined by using the damage index and the characteristics of the analytical model itself,and the extent of damage for those substructures identified at stage I is estimated in the second stage by using a second-order eigen-sensitivity approximation method. The main contribution of this paper is to test the two-stage method by using the real dynamic data of a complicated spatial model structure with limited sensors. The analysis results indicate that the two-stage approach is ableto detect the location of both damage cases,only the severity of brace damage cases can be assessed,and the reasonable analytical model is critical for successful damage detection.  相似文献   

17.
A new model is proposed to accurately predict the wrinkling and collapse loads of a membrane inflated beam. In this model, the pressure effects are considered and a modified factor is introduced to obtain an accurate prediction. The former is achieved by modifying the pressure-related structural parameters based on elastic small strain considerations, and the modified factor is determined by our test data. Compared with previous models and our test data, the present model, named as shell-membrane model, can accurately predict the wrinkling and collapse loads of membrane inflated beams.  相似文献   

18.
A novel approach is proposed in determining dynamic fracture toughness(DFT) of high strength steel,using the split Hopkinson tension bar(SHTB) apparatus,combined with a hybrid experimental-numerical method.The center-cracked tension specimen is connected between the bars with a specially designed fixture device.The fracture initiation time is measured by the strain gage method,and dynamic stress intensity factors(DSIF) are obtained with the aid of 3D finite element analysis(FEA).In this approach,the dimensions of the specimen are not restricted by the connection strength or the stress-state equilibrium conditions,and hence plane strain state can be attained conveniently at the crack tip.Through comparison between the obtained results and those in open publication,it is concluded that the experimental data are valid,and the method proposed here is reliable.The validity of the obtained DFT is checked with the ASTM criteria,and fracture surfaces are examined at the end of paper.  相似文献   

19.
Different phenomenological equations based on plasticity, primary creep (as a viscoplastic mechanism), secondary creep (as another viscoplastic mechanism) and different combinations of these equations are presented and used to describe the material inelastic deformation in uniaxial test. Agreement of the models with experimental results and with the theoretical concepts and physical realities is the criterion of choosing the most appropriate formulation for uniaxial test. A model is thus proposed in which plastic deformation, primary creep and secondary creep contribute to the inelastic deformation. However, it is believed that the hardening parameter is composed of plastic and primary creep parts. Accordingly, the axial plastic strain in a uniaxial test may no longer be considered as the hardening parameter. Therefore, a proportionality concept is proposed to calculate the plastic contribution of deformation.  相似文献   

20.
A discrete model of a rope is developed and used to simulate the plane motion of the rope fixed at one end.Actually,two systems are presented,whose members are rigid but non-ideal joints involve elasticity or dissipation.The dissipation is reflected simply by viscous damping model, whereas the bending stiffness conception is based on the classical curvature-bending moment relationship for beams and simple geometrical formulas.Equations of motion are derived and their complexity is discussed from the computational point of view.Since modified extended backward differentiation formulas(MEBDF)of Cash are implemented to solve the resulting initial value problems,the technique scheme is outlined.Numerical experiments are performed and influences of the elasticity and damping on behaviour of the model are analyzed.Basic energy principles are used to verify the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号