首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
纳米碳管增强铜基复合材料的滑动磨损特性研究   总被引:35,自引:3,他引:35  
以纳米碳管作为增强体制备了铜基复合材料,采用MM-220型环-块摩擦磨损试验机考察了该复合材料的滑动磨损行为,并观察分析了复合材料的组织结构、磨损表面形貌及磨屑组成.结果表明,其磨损过程存在跑合和稳态磨损2个阶段,在稳态磨损阶段主要发生氧化磨损,同时也存在磨粒磨损.工作环境影响复合材料的耐磨性.纳米碳管体积分数在12%~15%时,可以较好地发挥其润滑和阻止基体氧化的作用.  相似文献   

2.
利用粉末冶金法制备纳米碳管/铝基复合材料,研究不同纳米碳管含量对复合材料硬度和稳态摩擦磨损行为的影响,采用扫描电子显微镜观察复合材料的磨损表面形貌,并对其磨损机制进行探讨.结果表明:随着纳米碳管质量分数的增加,复合材料的硬度呈现先增大而后减小的趋势,含质量分数为2%的纳米碳管复合材料硬度比铝增加约80%;复合材料的摩擦系数逐渐降低,磨损率先减小而后增大;含质量分数为1%的纳米碳管复合材料磨损机制为磨粒磨损和粘着磨损,而含质量分数为2%的纳米碳管复合材料以剥层磨损和疲劳磨损为主.  相似文献   

3.
采用粉末冶金技术制备了纳米SiC陶瓷颗粒(0.0%、1.0%、2.2%和3.4%,质量分数,后面未作特殊说明,均为质量分数)强化的CoCrMo基高温抗磨复合材料,对复合材料的相组成及高温摩擦学性能进行了系统性研究. 在室温至1 000 ℃范围内利用球-盘式高温摩擦试验机测试了材料的高温摩擦学性能. 结果表明:复合材料的基体主要由γ (fcc)和ε (hcp)合金相构成,加入纳米SiC后复合材料出现了MoCr相,这有利于复合材料硬度的提高;纳米SiC提高了复合材料的硬度,同时降低了复合材料的密度;摩擦系数与纳米SiC的含量和温度相关,摩擦系数随纳米SiC含量的增加而增大,室温至800 ℃的摩擦系数整体呈下降趋势,1 000 ℃时含2.2%和3.4% SiC的复合材料具有较低的摩擦系数;高温环境下复合材料的抗磨损性能随纳米SiC含量的增加而显著提高;复合材料的磨损机理在不同温度下存在差异,随着温度升高,磨损机理逐渐由磨粒磨损和塑性变形转变为氧化磨损. 室温至1 000 ℃范围内CoCrMo-2.2% SiC具有较优异的高温抗磨损性能,这主要归因于复合材料的高硬度和磨损表面完整的氧化物润滑层.   相似文献   

4.
采用热压成型工艺制备了纳米ZnO填充超高分子量聚乙烯(UHMWPE)复合材料,采用销-盘式摩擦磨损试验机考察了纳米粒子对复合材料摩擦磨损性能的影响;采用扫描电子显微镜观察复合材料磨损表面形貌.结果表明:填充15%~20%的纳米ZnO可以显著改善UHMWPE的摩擦磨损性能;复合材料的磨损机理随纳米粒子含量的增加而变化,纯UHMWPE的磨损机理主要为粘着磨损和疲劳磨损,随着复合材料中纳米粒子含量增加,疲劳磨损特征逐渐消失,当其纳米粒子含量大于15%时,其磨损机理主要为粘着磨损;复合材料磨损表面出现了贫ZnO区和富ZnO区,且富ZnO区以"岛"的形式分布在贫ZnO区中.  相似文献   

5.
Cu—纳米TiB2原位复合材料的摩擦磨损性能   总被引:3,自引:3,他引:3  
采用销-盘式摩擦磨损试验机考察了Cu-纳米TiB2原位复合材料在滑动干摩擦条件下的磨损行为.结果表明:载荷和滑动速度对纳米TiB2颗粒原位增强Cu基复合材料的摩擦磨损性能有重要影响;随着载荷的增加,Cu-纳米TiB2原位复合材料的磨损率和摩擦系数增大;由于在较高载荷下发生表面开裂,TiB2增强相含量较高的原位复合材料的磨损由轻度磨损向严重磨损转化;在中等载荷下,表面保护性氧化膜和基体中纳米TiB2相使复合材料具有良好的抗软化能力,Cu-纳米TiB2原位复合材料的磨损率和摩擦系数随着滑动速度的增加而降低;在较高滑动速度下,复合材料的主要磨损机制为塑性流变和氧化磨损.  相似文献   

6.
纳米TiO2和SiO2填充尼龙的摩擦磨损行为   总被引:4,自引:2,他引:4  
制备了纳米SiO2和纳米TiO2填充PA1010尼龙复合材料,测定了复合材料的力学性能,并采用MM-200型摩擦磨损试验机考察了尼龙复合材料在干摩擦条件下同45#钢配副时的摩擦磨损行为.结果表明:填充纳米颗粒可以提高尼龙复合材料的力学性能;纳米SiO2和纳米TiO2作为填料可以提高PA1010的耐磨性,降低摩擦系数,其中纳米颗粒的最佳质量分数为10%;纳米颗粒填充尼龙1010复合材料同45#钢配副时主要呈现粘着和疲劳磨损特征.  相似文献   

7.
采用玄武三号栓-盘式摩擦磨损试验机研究了HNO3/H2SO4混合酸氧化改性炭纤维织物复合材料的摩擦磨损性能;采用傅立叶红外光谱仪、万能材料试验机和扫描电子显微镜分析了氧化改性前后炭纤维织物复合材料的化学结构、力学性能和磨损表面形貌.结果表明:HNO3/H2SO4混合酸氧化改性明显提高了炭纤维织物复合材料的减摩耐磨性能和承载能力,使炭纤维织物复合材料的承载能力提高了60%、磨损率降低了65.9%;炭纤维织物复合材料在高温下的摩擦磨损性能明显优于常温下的摩擦磨损性能,氧化改性后炭纤维织物复合材料的高温摩擦磨损性能明显优于未改性炭纤维复合材料.其原因在于混合酸氧化改性使炭纤维表面产生了活性基团,增强了炭纤维织物与胶粘剂的粘结力,从而提高了炭纤维织物复合材料的减摩抗磨性能.  相似文献   

8.
Ni—P—纳米碳管化学复合镀层的摩擦磨损特性   总被引:25,自引:4,他引:25  
用化学镀方法制备了 Ni- P-纳米碳管复合镀层 ,研究了热处理对复合镀层微观结构及摩擦学性能的影响 .结果表明 :Ni- P-纳米碳管复合镀层比 Ni- P- Si C和 Ni- P-石墨镀层具有更好的摩擦磨损性能 ;在 6 73K条件下热处理 2 h后 ,复合镀层的耐磨性能显著改善 ;除 Ni- P-纳米碳管复合镀层的摩擦系数基本不变以外 ,其余复合镀层的摩擦系数均降低 .  相似文献   

9.
纳米TiO2改性玻璃纤维织物复合材料的摩擦磨损性能研究   总被引:2,自引:5,他引:2  
采用玄武三号栓-盘式摩擦磨损试验机研究了纳米TiO2和硅烷偶联剂改性玻璃纤维织物的摩擦磨损性能;用配备X射线能量色散谱仪的扫描电子显微镜观察和分析了复合材料磨损表面形貌以及纳米TiO2在粘结剂中的分散情况.结果表明,纳米TiO2和硅烷偶联剂改性玻璃纤维织物可明显改善玻璃纤维织物的摩擦磨损性能,当纳米TiO2的质量分数为5%时,改性玻璃纤维织物的摩擦磨损性能最佳,其磨损率比纯玻璃纤维织物低60%,且其最大承载能力提高.温度对纳米TiO2改性玻璃纤维织物的摩擦磨损性能影响很大,当温度高于200 ℃时,其摩擦系数开始增大、磨损加剧;当温度达到240 ℃时,纳米TiO2改性玻璃纤维织物因发生严重磨损而失效.  相似文献   

10.
纳米Si_3N_4填充聚双马来酰亚胺摩擦磨损性能研究   总被引:7,自引:0,他引:7  
采用浇铸成型法制备纳米 Si3 N4颗粒填充聚双马来酰亚胺复合材料 ,考察了纳米 Si3 N4质量分数分别为 0 .5 %、1.0 %、1.5 %及 2 .0 %的复合材料的摩擦学性能 ,并用扫描电子显微镜对磨损表面形貌和磨屑进行了分析 .结果表明 ,纳米 Si3 N4颗粒对聚双马来酰亚胺的摩擦磨损性能具有明显的改性作用 ,尤其是当纳米 Si3 N4的质量分数为 1.5 %时 ,复合材料的摩擦磨损性能最佳 ,摩擦系数降为 0 .2 5 ,磨损率降低 72 %  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号