首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
为了研究预冷变形处理对Cu-Ni-Si铜合金的疲劳性能和破坏行为的影响,对含有预冷变形处理和不含预冷变形处理的Cu-Ni-Si铜合金进行拉伸实验、疲劳实验、裂纹扩展实验等相关实验,并通过扫描电镜对试样疲劳断口进行观察。结果表明,预冷变形处理大幅提高了材料机械强度、降低了材料韧性,同时使疲劳强度降低,其中,107寿命对应疲劳强度下降4.7%。试样的疲劳破坏均萌生自表面的晶体滑移,预冷变形处理的试样在裂纹扩展阶段表现为穿晶破坏,而不含预冷变形处理的试样在裂纹扩展阶段表现为沿晶和穿晶的混合破坏模式。预冷变形处理试样在裂纹稳定扩展阶段,表现为剪切型破坏,而不含预冷变形处理的试样在裂纹萌生后,裂纹转向在最大拉应力面内扩展直到最终的破坏。由上述结果可知,预冷变形改变了Cu-Ni-Si铜合金的疲劳破坏行为,从而影响了其疲劳性能。  相似文献   

2.
高蕴昕 《实验力学》1992,7(1):90-93
在裂纹扩展过程中,由于材料内部的不可逆变形造成热耗散,所以在裂纹尖端区域内必须存在一个由内耗散热所形成的温度场。本文给出了测定这个温度场的方法和实测结果,讨论了内耗散热对裂纹扩展速度的影响,为研究材料的热力耦合效应提供了实验依据。  相似文献   

3.
蠕变材料Ⅰ型动态扩展裂纹尖端场   总被引:5,自引:1,他引:4  
唐立强  蔡艳红 《力学学报》2005,37(5):573-578
为了研究黏性效应作用下的动态扩展裂纹尖端渐近场,建立了蠕变材料Ⅰ型动态扩展裂纹的 力学模型.首先,依据在稳态蠕变阶段,弹性变形和黏性变形同时在裂纹尖端场中占主导地 位,由量级协调可知,应力和应变具有相同的奇异量级,即(σ,ε)∝/ r- 1/(n-1). 其次,通过渐近分析推导出动态扩展裂纹尖端场的控制方程并求得了裂纹尖端应 力、应变和位移分离变量形式的渐近解.最后,采用双参数打靶法求得了裂纹尖端应力、应 变的数值结果.数值计算表明,裂尖场主要受材料的蠕变指数n和马赫数M的控制;在Ⅰ 型动态扩展裂纹前方,环向应变达到最大值,可据此建立断裂准则. 由于裂纹稳定扩展与非稳定扩展的主奇异项相同,因此对于稳定扩展裂纹的渐近分析方 法,同样适用于非稳定的裂纹扩展问题.  相似文献   

4.
李兆霞  黄跃平 《实验力学》1998,13(2):231-236
通过对砂浆试样的材料变形响应和表面裂纹图象的同步观测实验研究、试样表面细观裂纹萌生和裂纹扩展图象信息的采集和量化方法的研究,探讨脆性固体材料的损伤状态与其宏观力学响应之间的关联。用本文提出的实验及其分析处理方法,可以得到砂浆、混凝土、岩石一类脆性固体材料在承载和变形过程中,表面裂纹扩展的定量结果。试样的表面裂损度代表了砂浆试样在承载和变形过程中表面裂纹扩展的情况,也在一定程度上反映了试样内部的损伤情况。  相似文献   

5.
从细观上看,混凝土是一种由骨料、水泥浆基体、裂纹等组成的非均匀复合材料.单轴准静态加载条件下,应力应变曲线表现出明显的准脆性特征.其变形破坏过程实质上是内部微裂纹产生、扩展和汇合的过程,研究细观尺度的裂纹扩展演化将有助于深入了解混凝土的变形和破坏过程.声发射作为一种物理检测方法可以获取材料内部细观损伤演化的物理信息.本文基于声发射技术,结合改进的时差定位算法和矩张量理论对声发射信号进行分析,反演了混凝土巴西劈裂破坏中裂纹位置、裂纹类型以及裂纹面运动方向,揭示了混凝土宏观拉伸破坏的细观裂纹扩展机制.结果表明:裂纹运动过程清晰地显示了混凝土内裂纹源首先在试件与载荷接触面附近产生,之后聚集形成局部损伤区域,并沿轴线向中心扩展(加载平面)以及裂纹从试件中间向表面扩展的动态过程(厚度方向);裂纹运动体积可以作为裂纹形成、扩展过程中弹性能释放的度量,初始裂纹成核时体积参数较小,峰值载荷时,裂纹运动体积最大达到5.93×10-4 mm3;混凝土宏观尺度的拉伸破坏在细观尺度上存在有拉伸裂纹、混合裂纹以及剪切裂纹;拉伸裂纹最多,占裂纹总数约为60%,剪切裂纹最少,约占裂纹总数的10%;拉伸裂纹运动主导了试件的宏观劈裂破坏.  相似文献   

6.
平面应力弹塑性复合型断裂研究   总被引:1,自引:0,他引:1  
本文对受拉伸载荷的含有不同倾角中心裂纹的铝合金薄板,用直接记录激光散斑法和云纹法测量了裂纹周围的变形场,并测得裂纹稳态扩展过程中载荷与裂纹扩展量的对应关系。同时采用弹塑性大变形的有限元方法进行了数值分析,得到裂纹周围的应力应变分布,计算结果与实验测量值符合良好,并进行了讨论。  相似文献   

7.
从细观上看, 混凝土是一种由骨料、水泥浆基体、裂纹等组成的非均匀复合材料. 单轴准静态加载条件下, 应力应变曲线表现出明显的准脆性特征. 其变形破坏过程实质上是内部微裂纹产生、扩展和汇合的过程, 研究细观尺度的裂纹扩展演化将有助于深入了解混凝土的变形和破坏过程. 声发射作为一种物理检测方法可以获取材料内部细观损伤演化的物理信息. 本文基于声发射技术, 结合改进的时差定位算法和矩张量理论对声发射信号进行分析, 反演了混凝土巴西劈裂破坏中裂纹位置、裂纹类型以及裂纹面运动方向, 揭示了混凝土宏观拉伸破坏的细观裂纹扩展机制. 结果表明: 裂纹运动过程清晰地显示了混凝土内裂纹源首先在试件与载荷接触面附近产生, 之后聚集形成局部损伤区域, 并沿轴线向中心扩展(加载平面)以及裂纹从试件中间向表面扩展的动态过程(厚度方向); 裂纹运动体积可以作为裂纹形成、扩展过程中弹性能释放的度量, 初始裂纹成核时体积参数较小, 峰值载荷时, 裂纹运动体积最大达到$5.93\times10^{-4}$ mm$^{3}$; 混凝土宏观尺度的拉伸破坏在细观尺度上存在有拉伸裂纹、混合裂纹以及剪切裂纹; 拉伸裂纹最多, 占裂纹总数约为60%, 剪切裂纹最少, 约占裂纹总数的10%; 拉伸裂纹运动主导了试件的宏观劈裂破坏.   相似文献   

8.
本文介绍了如何用云纹干涉法实时地观察铁电陶瓷在力载荷和电载荷共同作用下裂尖的破坏行为.测量了三点弯试验中由电场和应力集中导致的裂尖的变形场.对变形的云纹图分析表明:当极化方向与裂纹扩展方向一致,且都与电场方向垂直,裂尖附近的正应变随电场的增加而增加,应变集中现象比较突出,电场促进和加速了裂纹的扩展.  相似文献   

9.
为了研究粘性效应作用下的动态扩展裂纹尖端渐近场,建立了蠕变材料Ⅱ型动态扩展裂纹的力学模型,在稳态蠕变阶段,弹性变形和粘性变形同时在裂纹尖端场中占主导地位,应力和应变具有相同的奇异量级,即(σ,ε)∝r-1/(n-1)。通过渐近分析求得了裂纹尖端应力、应变和位移分离变量形式的渐近解,并采用打靶法求得了裂纹尖端应力、应变的数值结果,数值计算表明,裂尖场主要受材料的蠕变指数n和马赫数M的控制。通过对裂纹尖端场的渐近分析,从应变角度出发,提出了蠕变材料Ⅱ型动态扩展裂纹的断裂判据。  相似文献   

10.
为了研究粘性效应作用下的动态扩展裂纹尖端渐近场,建立了可压缩粘弹性材料II型动态扩展裂纹的力学模型,推导了可压缩材料Ⅱ型动态扩展裂纹的本构方程.在稳态蠕变阶段,弹性变形和粘性变形同时在裂纹尖端场中占主导地位,应力和应变具有相同的奇异量级r-1/(n-1).通过渐近分析求得了裂纹尖端应力、应变和位移分离变量形式的渐近解,并采用打靶法求得了裂纹尖端应力、应变和位移的数值结果,给出了应力、应变和位移随各种参数的变化曲线.数值计算表明,弹性变形部分的可压缩性对Ⅱ型裂尖应力场影响甚微,而对应变场和位移场影响较大.裂尖场主要受材料的蠕变指数n和马赫数M的控制.当泊松比ν =0.5时,可以退化为不可压缩粘弹性材料Ⅱ型动态扩展裂纹.  相似文献   

11.
刘丰  郑宏  李春光 《力学学报》2014,46(4):582-590
数值流形方法(numerucal manifold method,NMM)通过引入数学覆盖和物理覆盖两套系统来统一处理连续和非连续问题. 通过用移动最小二乘插值(moving least squares interpolation,MLS)中的节点影响域构造数学覆盖,得到了基于数值流形方法的无网格伽辽金法(element free Galerkin,EFG). 该方法在保证前处理简单的同时,又能方便处理如裂纹等不连续问题. 建立了适用于小变形和大变形的裂纹扩展计算格式,并通过对曲折裂纹(kinked crack)的处理,在不加密的情况下实现了任意小步长的裂纹扩展,大大提高了在固定网格中模拟裂纹扩展的实用性. 大小变形的结果对比表明,按照不考虑构型变化的小变形计算,结果可能偏于危险.   相似文献   

12.
数值流形方法(numerucal manifold method,NMM)通过引入数学覆盖和物理覆盖两套系统来统一处理连续和非连续问题. 通过用移动最小二乘插值(moving least squares interpolation,MLS)中的节点影响域构造数学覆盖,得到了基于数值流形方法的无网格伽辽金法(element free Galerkin,EFG). 该方法在保证前处理简单的同时,又能方便处理如裂纹等不连续问题. 建立了适用于小变形和大变形的裂纹扩展计算格式,并通过对曲折裂纹(kinked crack)的处理,在不加密的情况下实现了任意小步长的裂纹扩展,大大提高了在固定网格中模拟裂纹扩展的实用性. 大小变形的结果对比表明,按照不考虑构型变化的小变形计算,结果可能偏于危险.  相似文献   

13.
深埋椭圆形片状裂纹的偏折扩展   总被引:1,自引:0,他引:1  
基于无限大弹性基体深埋椭圆形片状裂纹的变形场,推导了椭圆形片状裂纹的能量释放率,采用能量平衡方法建立了椭圆形片状裂纹承受拉应力和剪应力时的复合断裂准则. 考虑裂纹在拉-剪应力作用下的偏折扩展,分析了裂纹的偏折方向,提出了椭圆形片状裂纹发生偏折扩展时的初始偏折位置的确定方法.   相似文献   

14.
张天林  龚明  余进  何世平 《实验力学》2007,22(3):367-371
测量裂端附近区域的弹塑性变形,对于研究材料的损伤或微裂纹的产生,获得材料早期的损伤信息,为预防宏观裂纹的产生及扩展具有十分重要的意义。本文用A3钢材料制作边缘带裂纹的显微拉伸试件,试件表面进行了金相处理。试件是用由计算机控制的显微拉伸台进行加载试验。在加载过程中,利用环境扫描电镜对裂端附近的显微结构进行原位观察以及扫描记录。应用数字散斑相关技术对扫描电子显微镜记录的显微结构图进行分析处理,求出裂端附近的弹塑性变形。借助扫描电子显微镜,不仅可以定性观察应力集中区微裂纹的萌生及扩展过程,还可以结合数字散斑相关技术,对微区内的弹塑性变形进行测试,是研究微区域内材料变形的一个有效手段。  相似文献   

15.
本文提供由计算机图形仿真系统构成的模拟试验环境.其主要特色是:1.采用裂纹扩展的分形弯折模型描述裂纹的动态扩展,裂纹位置采用随机处理技术,使单元裂纹更接近实际;2.采用动画显示技术,模拟钢筋混凝土构件从开始加载到变形破坏的试验全过程;3.用户可以根据需要选取任意截面,显示该截面的应力应变曲线.  相似文献   

16.
本文根据平面应力弹塑性断裂的带状颈缩区模型,以裂纹顶端颈缩区的相对伸长达到材料延伸率作为裂纹扩展的准则,采用塑性大变形的基本方程和有限元方法,计算了含中心裂纹的铝合金薄板在均匀拉伸作用下的裂纹稳态扩展过程,计算结果与实验结果符合很好。  相似文献   

17.
应用界面断裂力学理论和Stroh方法,研究了广义平面变形下动态裂纹沿着各向异性双材料界面扩展时的裂尖奇异应力及动态应力强度因子.双材料界面的动态裂尖区域特性主要由两个实矩阵W和D确定,且裂尖奇异应力和动态应力强度因子可以由包含这两个矩阵的柯西奇异积分方程确定,同时给出了动态应力强度因子和能量释放率的显示表达式.算例得出当裂纹以小速度扩展时,裂尖振荡因子ε与静态时几乎相同,当界面裂纹扩展速度接近瑞利波速时,ε趋于无穷大;同时得出应力强度因子及能量释放率随裂纹扩展速度的变化关系.  相似文献   

18.
不同韧性金属扩展裂纹尖端Gao—Hwang奇异场的实验研究   总被引:1,自引:0,他引:1  
用云纹法和光学空间滤波技术,测量了六种不同应变硬化指数(n)的铝和铜金属材料双边裂纹,单向拉伸试件的扩展裂纹尖端三维位移场.利用试验得到的位移场,分析了位移奇异性,并与G-H 理论解进行了比较.由试验的位移场数据确定了理论解中两个待定常数A 和ε_■,给出了Ⅰ型、平面应力、幂硬化材料,扩展裂纹尖端奇异场的比较形式.在理论与试验位移场相差±10%的误差范围内,确定了试验的G-H 奇异场主导区范围、形状,并对结果进行了分析.试验表明:扩展裂纹尖端存在[ln(A/r)]~■奇异主导区.在本试验应变硬化指数为n=3.5→14的六种材料范围内,这个主导区形状由蝶形发展到扁圆或圆形.G-H 奇异主导区的尺寸和形状与材料、试件几何尺寸、外载形式有关.在G-H 场内部存在着三维变形区,裂纹尖端断裂过程区在此三维变形区内.随着外载荷不断增加,裂尖三维变形区内将出现典型的韧性损伤现象:首先在晶界或二相夹杂处,出现孔洞,然后孔洞逐渐长大,汇合,导致宏观裂纹扩展.载荷比较低时,在G-H 场外边还将有弹性场存在,随着载荷增加,G-H 场也在向外扩大.  相似文献   

19.
第四讲 全息和散斑法在断裂力学中的应用   总被引:1,自引:0,他引:1  
文中概述了全息干涉和散斑相关法的基本原理,并给出定量计算的基本公式.较详细地介绍利用全息或散斑干涉法在断裂力学中基本参量的测量;裂纹尖端三维变形场的测量;裂纹尖端塑性区的发展;内外表面裂纹应力强度因子的测量;裂纹尖端小区损伤变形测量;界面裂纹变形场以及动态裂纹扩展断裂参数及变场测量的原理,并给出若干实例,  相似文献   

20.
针对测量单边缺口拉伸(SENT)试样的裂纹尖端张口位移(CTOD)阻力曲线时,延性裂纹扩展量的计算过于复杂的问题,提出了一种由数字图像相关技术(DIC)计算的变形场来确定裂纹尖端位置,并快速推算延性裂纹扩展量的方法。该方法首先在缺口和裂纹上下方的弹性区域设置两条平行横线;然后通过两条横线间的位移差构建曲线,曲线变化幅度的临界点即为裂纹端部的位置;根据临界点位置计算裂纹扩展量,最后测量CTOD并构建阻力曲线。将本文方法与另一种通过DIC测量SENT试样CTOD阻力曲线的方法进行对比,结果表明本文方法经过简便的计算后拟合的阻力曲线效果更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号