首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于相似模型试验,利用数值分析方法研究了含裂隙锚固洞室在顶爆下的损伤演化和动态响应规律,并探讨了裂隙倾角和长度对锚固洞室损伤分布和拱顶位移的影响。随着爆炸应力波的传播,在裂隙表面形成张拉损伤,并在裂隙尖端扩展出翼生裂纹,随后在锚固洞室附近的拱顶自由面、锚固区边界处以及底板中间依次形成较大拉伸损伤区域。随着裂隙倾角从0°加大到90°,拱顶锚固区及锚固区边界最大损伤区域面积先减小后增加,裂隙倾角为45°时面积最小。当裂隙的长度相同时,拱顶峰值位移随裂隙倾角的增大先增加后减小;当裂隙的倾角相同时,裂隙长度越长对应力波的阻碍作用越明显,裂隙长度为30cm、倾角为45°时洞室破坏最小。  相似文献   

2.
基于相似模型试验,采用显式非线性动力分析程序LS-DYNA3D研究了地下锚固洞室在拱顶和拱腰侧两处集中装药爆源同时爆炸作用下应力波传播规律、裂纹形成机理以及洞壁围岩位移分布特征。通过对比分析顶爆试验和计算模型的压应力时程曲线,发现模拟与试验结果吻合,且符合应力波的传播规律,表明数值模拟结果可靠。爆源爆炸后,应力波以圆形向周围岩体传播,两应力波相遇处压应力强度明显大于周围岩体;当应力波传到自由面时,会反射形成拉伸波,在地表下方和洞室上方发生“层裂”现象,在拱顶和拱腰侧爆源中间沿洞室径向有裂纹延伸,由于拉伸波的叠加,在爆源下方出现“八”字形的锥形裂纹面。锚杆能够起到加固岩体的作用,锚固洞室比毛洞裂纹分布少,毛洞迎爆侧裂纹主要为横向裂纹,而锚固洞室则为径向劈裂和横向裂纹。两爆源中点洞室径向处的洞壁围岩位移峰值最大,极易产生破坏。  相似文献   

3.
为研究循环爆炸对地下洞室的影响,基于相似模型试验,采用通用有限元软件ABAQUS对比研究了洞室拱顶高水平单次爆炸和低水平10次循环爆炸作用下地下洞室围岩的应力波衰减规律、损伤累积规律及洞壁位移和环向应变分布特征。结果表明:循环爆炸中,洞室围岩的应力波衰减速度随着爆炸次数的增加先减小后增大。单次爆炸中,洞壁环向峰值应变从拱顶至直墙脚由拉应变转为压应变;循环爆炸中,随着爆炸次数的增加,拱顶环向峰值应变由压应变转为拉应变。爆炸荷载总水平相同时,低水平循环爆炸中洞室围岩的损伤面积和程度比高水平单次爆炸大。循环爆炸中,围岩的损伤累积呈现不可逆的逐级增加趋势,且累积损伤和爆炸次数之间呈明显的非线性关系。  相似文献   

4.
为研究破片式战斗部爆炸后破片和冲击波两种毁伤元的相遇位置,先通过ANSYS/LS-DYNA对破片式战斗部的爆炸过程进行数值计算,再通过试验的方法测量破片和冲击波相遇位置,验证了数值计算方法的合理性。在此基础上,分析了装填系数、破片质量、爆速和爆热对相遇位置的影响。结果表明:随着装填系数、破片质量、爆速和爆热的增加,相遇位置减小;装填系数增加31%,相遇位置距爆炸中心的距离减小11.5%;单枚破片质量增加1倍,相遇位置距爆炸中心的距离减小2.4%。  相似文献   

5.
采用计算流体力学方法,探讨路堤倾角变化对高速列车侧风运行气动特性影响.结果表明:随着路堤倾角增大,头车侧向力系数先增加后减小,而中间车侧向力系数则持续减小.尾车上的侧向力系数先是略微减小,当路堤倾角达到47.5°时,侧向力系数随倾角增加而增加.作用在中间车上的负升力随着路堤倾角增加而增加.尾车的升力系数对路堤倾角变化非常敏感,变化幅度较大.路堤倾角变化时高速列车绕流流场变化,从而导致列车受到的气动力发生变化.  相似文献   

6.
本文在实验的基础上对窄缝通道中液氮的临界热流密度进行了实验研究。实验针对3个不同长度和间距尺寸的窄缝通道在多方位倾角的情况下进行。实验测量结果显示窄缝的方位倾角和窄缝的间距尺寸对临界热流密度有很大的影响。临界热流密度随窄缝间距尺寸的减小而减小,随着窄缝倾角的变化先增加(0°-90°)后减小(90°-180°),而窄缝长度对临界热流密度的影响作用较为复杂。通常,临界热流密度在倾角为90°时达到最大值。  相似文献   

7.
《工程热物理学报》2021,42(8):2175-2180
本文利用透明的石英玻璃油池,研究了冰区池火中初始油池边沿高度对冰壁侧腔长度的影响。实验发现随着初始油池边沿高度的增加,侧腔长度呈现出先增加后减小的趋势。分析结果表明,这主要由于油池边沿高度会影响氧气和燃料蒸汽的分布,进而改变边界层厚度,而在边界层厚度的变化改变了燃烧速率,进一步导致燃烧时长发生变化。借助瞬态能量方程和能量守恒方程,发现侧腔长度和燃烧时长存在一定的线性关系。  相似文献   

8.
依据岩石破坏的能量转化机制和单元整体破坏准则,提出了同时考虑岩石内部积聚的可释放应变能、岩石破坏所需的表面能临界值及脆性系数的多参量岩爆判据。基于三维离散元(3DEC)数值仿真平台,对上述岩爆判据进行了二次开发,研究了在不同埋深、不同侧压力系数下深地下工程在开挖扰动时的围岩主应力差、能量及岩爆倾向性响应特征。结果表明:围岩的主应力差较大值多集中在洞室拱顶,弹性应变能密度较大值多集中在洞室拱顶和拱脚处;随着埋深和侧压力系数的增加,岩爆判据指标的数值和较大值的分布范围均增大。为了验证所提岩爆判据和数值模拟方法的合理性与适用性,对锦屏二级水电站4#引水隧洞岩爆灾害进行了数值模拟与分析,发现岩爆灾害强弱程度及发生位置与工程实际情况相符。研究结果为深地下工程岩爆灾害的预测预报和有效防控提供了理论支持和技术指导。  相似文献   

9.
为进一步探究影响RP-3航空煤油燃爆特性参数的因素,在内径为200mm、高度为5 400mm的立式激波管中,采用强点火方式,测定了其在不同浓度下的临界起爆能以及不同起爆能量、浓度当量比、喷雾压力下RP-3航空煤油的爆速和爆压。实验结果表明:航空煤油的临界起爆能随浓度当量比的增加先急剧降低,达到最小值后又缓慢上升,基本呈"L"形变化;在喷雾压力为0.20~0.60MPa、同一浓度条件下,RP-3航空煤油的爆速、爆压随喷雾压力的变化曲线呈倒"U"形;随着起爆能量升高,爆速、爆压均呈直线上升趋势,并且当起爆能量小于1.68MJ/m~2时,煤油未达到直接爆轰状态;燃料的爆速、爆压随浓度当量比的增加先上升后下降,其变化趋势也基本呈倒"U"形。  相似文献   

10.
沙尘气溶胶粒子群的散射和偏振特性   总被引:13,自引:5,他引:8  
郝增周  龚芳  潘德炉  黄海清 《光学学报》2012,32(1):101002-22
根据Mie散射理论,以对数正态分布函数描述沙尘气溶胶粒子群的粒径尺度分布,计算了沙尘气溶胶粒子群在0.2~40μm波段间对太阳短波辐射和地球大气长波辐射的单次散射反照率、散射相矩阵函数,揭示了不同相对湿度时,沙尘粒子群对入射辐射的散射和偏振的特征。结果表明,沙尘粒子群的单次散射反照率随着入射波长的增加有较大起伏,不同相对湿度条件下,变化趋势基本一致;在可见光、近红外波段单次散射反照率随湿度增加而变大,湿度95%时非常接近于1;大于10μm的热红外波段单次散射反照率随相对湿度增加而减小,具有较强的吸收辐射能力。散射辐射强度受湿度影响较小,随散射角的增加呈现先减小后增大的趋势,且增大的趋势随着波长的增加而减弱;不同波段上,线偏振和圆偏振随散射角和相对湿度变化存在差异;在前向和后向仅对入射辐射为圆偏振辐射产生圆偏振散射;散射光的偏振特性及其湿度差异主要表现在后向散射区,多以拱形形式体现。拱顶峰值散射角位置存在差异,且峰值散射角随相对湿度的降低向后向漂移。  相似文献   

11.
爆速是爆炸复合的主要参数之一。采用玻璃微球作为敏化剂和稀释剂,研究玻璃微球尺寸、含量对乳化炸药爆速的影响,然后调配爆速为2.230km/s的低爆速乳化炸药,利用铝蜂窝板配置蜂窝结构炸药,进行铝-钢复合板的爆炸焊接。试验结果表明:炸药密度随着玻璃微球含量的增加而减小;小尺寸玻璃微球含量(质量分数)小于2%或者大于35%时,乳化炸药发生拒爆现象;玻璃微球含量大于7%且小于35%时,炸药爆速随着玻璃微球含量的增大而减小。小尺寸(5~100μm)玻璃微球的敏化效果和调节爆速效果比大尺寸(70~200μm)玻璃微球好,铝蜂窝结构炸药用于铝-钢爆炸焊接可以获得良好的结合质量。  相似文献   

12.
段塞流液塞频率的波动特性   总被引:1,自引:0,他引:1  
段塞流的实际物理过程是复杂的随机过程,液塞频率也仅是以周期性来近似模拟段塞流的间歇性.本文对段塞流液塞频率的波动特性进行了深入研究.结果表明:随着折算气速的增加,液塞频率先减小然后增大,在折算气速增大的过程中液塞频率存在一个极小值.随着折算液速的增加,液塞频率急剧增大,折算液速是影响液塞频率的主要因素.在下倾管中,在折算气速相同的情况下,液塞频率是随下倾角的增大而降低的.这是因为随着下倾角的增大,重力作用增强,液塞消散增强.在上倾管中,在折算气速相同的情况下,液塞频率也随上倾角的增大而降低.  相似文献   

13.
实验研究了烧结金属纤维板在大空间下的自然对流换热,分析了倾角、孔隙率、纤维丝经、Ra数和金属纤维导热系数对换热性能的影响.实验结果表明:存在最优的角度(60°左右)使烧结金属纤维板的自然对流换热性能最好,但倾斜角度对烧结金属纤维板的换热影响没有光板显著;加热面的平均Nu数随着纤维直径和孔隙率的增加均先增加后减小;在实验...  相似文献   

14.
旋转爆震燃烧室与涡轮导向器组合实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
旋转爆震涡轮发动机正获得广泛的关注,但旋转爆震燃烧室出口存在着高频的压力波动,压力波动会降低涡轮的工作效率并减小涡轮的工作寿命.基于旋转爆震波的传播特点,开展了旋转爆震燃烧室与涡轮导向器组合结构的实验研究.燃料为H2,由位于燃烧室前端的120个小孔喷入燃烧室;氧化剂为空气,由径向环缝喷入燃烧室.在燃烧室内起爆旋转爆震波后,爆震产物直接流入导向器内.研究结果表明,随当量比的增加,燃烧室内爆震波的传播速度呈先增大后减小的趋势.在导向器出口仍存在与燃烧室内旋转爆震波同主频的振荡压力,但相对于导向器前的振荡压力,出口压力振幅减小了约64%.旋转爆震波传播速度的相对偏差先减小后增大,并且爆震波传播越稳定,其速度损失越小.   相似文献   

15.
研究了敞开式冷藏陈列柜底板长度对柜内食品包温度的影响。结果表明:添加挡风板使下侧食品包温度减小0.16~0.65K;随着底板长度的增加,搁架内外侧食品包平均温差逐渐减小;底板长度每增加100mm,底板最外侧食品包温度升高约0.35K;底板长度增加0~200mm,可以有效地减少风幕冷量的外溢。  相似文献   

16.
 基于回旋行波放大器的线性理论和反射边界条件,建立了渐变输出端存在反射时回旋行波放大器模型,分析了TE01圆电模基波回旋行波放大器输出端反射对其增益、返波起振长度、返波起振电流和返波起振频率的影响。结果表明,随着反射增强,线性增益降低,返波起振长度和起振电流减小,返波起振频率的变化较小;反射增强将在一定程度内影响放大器的稳定性。  相似文献   

17.
 分析了颗粒介质在冲击载荷下的加载、卸载本构关系,应用特征线理论对平面一维爆炸冲击波在颗粒介质中的衰减进行了计算。结果表明:组成颗粒的材料、孔隙率及炸药的爆速决定了初始冲击波峰值的大小。炸药爆速越高,介质孔隙率越大,材料本身的冲击阻抗越大,初始压力越高。炸药长度、材料本身的冲击阻抗及介质的孔隙率决定了冲击波的衰减速度。炸药长度越小,材料本身的冲击阻抗越大,介质的孔隙率越高,冲击波衰减越快。  相似文献   

18.
基于点光源和球面光源的集鱼灯照度模型比较研究   总被引:1,自引:0,他引:1       下载免费PDF全文
集鱼灯是秋刀鱼等光诱渔业中重要的助渔装备,本文以秋刀鱼集鱼灯为例,分别基于点光源法和球面光源法建立了单灯箱理论照度模型。比较平面照度的理论值和实测值发现,基于球面光源法计算的理论值和实测值间线性拟合斜率系数较点光源法更接近于1。基于球面光源法计算的理论值与实测值间无显著差异(P0. 05),而由点光源法计算的理论值与实测值间存在显著性差异(P0. 05),说明基于球面光源法建立的照度模型更加符合实际情况。根据球面光源模型分别计算了白、红单灯箱在45°、60°、75°倾角下的照度分布,结果发现照度值均随距离增加呈先增大后减小趋势;同倾角不同灯色间照度分布差别较大,相同位置处白灯箱照度明显高于红灯箱;同灯色不同倾角间照度分布差别较小;随倾角增加,最大照度值位置到原点距离逐渐减小;照度衰减速率的绝对值随距离增加呈现先减小后增大再减小的趋势,最终趋近于0。  相似文献   

19.
高空核爆炸下大气的X射线电离及演化过程数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
欧阳建明  马燕云  邵福球  邹德滨 《物理学报》2012,61(8):83201-083201
利用数值模拟程序模拟了不同高度核爆炸下大气的X射线电离及演化过程.结果表明: X射线电离产生的电子数密度在射线到达后约100 ns时刻达到峰值, 峰值数密度随着到裸核区距离的增加而减小;电子具有较长的寿命, 电子寿命随着到裸核区距离的增加而增大; X射线电离空气产生正离子O+, O2+, N2+,爆高为120 km情况下 O+的峰值数密度与O2+的相近,能维持约1 s. X射线对空气的电离影响范围在数十千米以内,在距裸核区较近的区域, 爆高为80 km时产生的电子峰值数密度比爆高为120 km时的电子峰值数密度高, 在距裸核区较远的区域则相反.  相似文献   

20.
为掌握反应器结构参数和放电参数对大气压非平衡等离子体射流(N-APPJ)的射流长度的定量影响,设计了多结构的针-环式电极氩气等离子体射流装置,分别研究了放电电压、电极间隙、高压电极放电末端与接地电极的距离及氩气体积流量对射流长度的影响,并采用发生光谱法对该反应器产生的等离子体电子激发温度进行了计算。结果表明:等离子体射流的最大长度可达80 mm;高压电极放电末端与接地电极之间的距离越大,射流长度越长但不是线性增长;射流长度随电极间隙的增加呈现先增大后减小的趋势且在电极间隙为4.5 mm时该射流达到最大长度;随着氩气体积流量的增加,等离子体射流长度也呈现出先增大后减小的趋势且减小的幅度较低;电子激发温度在高压电极和接地电极处较高,两电极之间部分次之,在石英管出口处会有比较明显的下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号