首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
从分数傅里叶变换(FRFT)的定义出发,理论分析了联合分数变换相关器(JFRTC)的分数相关特性.从所得JFRTC的数学表达式中可以看出,将FRFT应用到联合变换相关器(JTC)中得到的JFRTC具有与传统JTC不同的性质.对于传统JTC,一旦输入平面上参考图像与目标图像之间的距离给定,相关输出峰的位置即确定,而JFRTC的相关输出峰的位置则可以由分数级次p1和p2来自由调节,这个特性在实际模式识别中非常有用.另一方面,JFRTC的相关输出峰值在大多数情况下低于传统JTC的相关峰值,却是JFRTC的一大缺点.最后,从FRFT的比例性质出发,给出了FRFT谱畸变不变的实现条件,并由此预言了JFRTC畸变不变模式识别的功能.  相似文献   

2.
We investigate a subdiffusive, fractional Fokker-Planck dynamics occurring in time-varying potential landscapes and thereby disclose the failure of the fractional Fokker-Planck equation (FFPE) in its commonly used form when generalized in an ad hoc manner to time-dependent forces. A modified FFPE (MFFPE) is rigorously derived, being valid for a family of dichotomously alternating force fields. This MFFPE is numerically validated for a rectangular time-dependent force with zero average bias. For this case, subdiffusion is shown to become enhanced as compared to the force free case. We question, however, the existence of any physically valid FFPE for arbitrary varying time-dependent fields that differ from this dichotomous varying family.  相似文献   

3.
分数傅里叶变换计算全息   总被引:1,自引:0,他引:1  
盛兆玄  孙新利 《光学技术》2008,34(1):156-158
在计算全息和分数傅里叶变换的基础上提出了不对称分数傅里叶变换计算全息和双随机相位不对称分数傅里叶变换计算全息。在这种方法中,首先用一随机相位函数乘以输入图像信息,然后沿x方向实施α级次的一维分数傅里叶变换,再乘以第二个随机相位函数,最后,沿y方向实施β级次的一维分数傅里叶变换。采用迂回位相编码法对变换后的结果编码,绘出计算全息图。为了恢复原始图像,需要知道变换级次和随机相位函数。利用这种方法进行图像加密,使加密图像的密钥由原来两重增加到四重,从而提高了系统的保密性能。  相似文献   

4.
Weimin Jin  Caijie Yan 《Optik》2007,118(1):38-41
The optical image encryption based on multichannel fractional Fourier transform (FRT) and double random phase encoding technique is proposed. Optical principles of encoding and decoding are analyzed in detail. With this method, one can encrypt different parts of input image, respectively. The system security can be improved to some extent, not only because fractional orders and random phase masks in every channel can be set with freedom, but also because the system parameters among all channels are independent. Numerical simulation results of optical image encryption based on four channel FRT and double random phase encoding are given to verify the feasibility of the method.  相似文献   

5.
From continuous time random walks to the fractional fokker-planck equation   总被引:1,自引:0,他引:1  
We generalize the continuous time random walk (CTRW) to include the effect of space dependent jump probabilities. When the mean waiting time diverges we derive a fractional Fokker-Planck equation (FFPE). This equation describes anomalous diffusion in an external force field and close to thermal equilibrium. We discuss the domain of validity of the fractional kinetic equation. For the force free case we compare between the CTRW solution and that of the FFPE.  相似文献   

6.
Lv Longjin  Fu-Yao Ren  Wei-Yuan Qiu 《Physica A》2010,389(21):4809-1752
In this paper, in order to establish connection between fractional derivative and fractional Brownian motion (FBM), we first prove the validity of the fractional Taylor formula proposed by Guy Jumarie. Then, by using the properties of this Taylor formula, we derive a fractional Itô formula for H∈[1/2,1), which coincides in form with the one proposed by Duncan for some special cases, whose formula is based on the Wick Product. Lastly, we apply this fractional Itô formula to the option pricing problem when the underlying of the option contract is supposed to be driven by a geometric fractional Brownian motion. The case that the drift, volatility and risk-free interest rate are all dependent on t is also discussed.  相似文献   

7.
朱邦和  韩利  谢鸿伟  刘树田 《光子学报》1999,28(10):910-914
本文通过理论分析和计算机仿真研究了分数傅里叶变换的级次对分数相关峰值特性的影响并优化了分数相关的级次。结果表明分数相关输出在旁辩和峰值宽度方面与传统相关相比有了较大的改善,因而可以提高目标探测的灵敏性。  相似文献   

8.
In this study, the modified Kudryashov method is used to construct new exact solutions for some conformable fractional differential equations. By implementing the conformable fractional derivative and compatible fractional complex transforms, the fractional generalized reaction duffing (RD) model equation, the fractional biological population model and the fractional diffusion reaction (DR) equation with quadratic and cubic nonlinearity are discussed. As an outcome, some new exact solutions are formally established. All solutions have been verified back into its corresponding equation with the aid of maple package program. We assure that the employed method is simple and robust for the estimation of the new exact solutions, and practically capable for reducing the size of computational work for solving a various class of fractional differential equations arising in applied mathematics, mathematical physics and biology.  相似文献   

9.
Xiaoyun Jiang  Mingyu Xu 《Physica A》2010,389(17):3368-3374
In this paper a time fractional Fourier law is obtained from fractional calculus. According to the fractional Fourier law, a fractional heat conduction equation with a time fractional derivative in the general orthogonal curvilinear coordinate system is built. The fractional heat conduction equations in other orthogonal coordinate systems are readily obtainable as special cases. In addition, we obtain the solution of the fractional heat conduction equation in the cylindrical coordinate system in terms of the generalized H-function using integral transformation methods. The fractional heat conduction equation in the case 0<α≤1 interpolates the standard heat conduction equation (α=1) and the Localized heat conduction equation (α→0). Finally, numerical results are presented graphically for various values of order of fractional derivative.  相似文献   

10.
We investigate the relationships between models of power-law long-range interactions and mechanics based on fractional derivatives. We present the fractional Lagrangian density which gives the Euler–Lagrange equation that serves as the equation of motion for fractional-power-law long-range interactions. We derive this equation by the fractional variational method. In addition, we derive a Noether-like current from the fractional Lagrangian density.  相似文献   

11.
Based on Collins integral formula and the fact that a hard aperture function can be expanded into a finite sum of complex Gaussian functions, the propagation properties of cosh-squared-Gaussian beam passing through ideal and apertured FRFT systems have been studied, and some comparisons between using the methods of analytical formula and diffraction integral formula have been done. Further, the studies indicate that the normalized intensity distributions on FRFT plane depend on the fractional order, truncation parameter and initial beam parameter Ω. Variations of normalized intensity distributions with FRFT order are periodic: when the impact of aperture cannot be ignored, the variation period is 4; and when the impact of aperture can be ignored, the variation period is 2.  相似文献   

12.
Fuzzy logic control has been used frequently in tuning network control system (NCS) due to its on-line dynamic static non-linear match and several remarkable fractional-order controllers have achieved satisfactory control performance when applied to NCS in present years, therefore, in this paper, a novel fractional fuzzy logic controller which combined the fractional algorithm and fuzzy logic control together has been proposed to deal with fixed and random network induced delays in closed-loop feedback systems. The comparisons of set-point tracking performances of fractional fuzzy logic PID controller (FFuzzyPID), conventional fuzzy logic PID controller(FuzzyPID), fractional optimal PID controller (FOPID), and optimal PID controller(OPID) on a representative plant with fixed and random network delays have been shown with simulations. The simulation results indicate that fractional fuzzy logic controller has higher capability to handle network delays compared with other controllers in most cases.  相似文献   

13.
A new method for optical image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform. We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as additional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. The optical realization is then proposed and computer simulations are also performed to confirm the possibility of the proposed method.  相似文献   

14.
In the processing and analysis of diffusion tensor imaging (DTI) data, certain predefined morphological features of diffusion tensors are often represented as simplified scalar indices, termed diffusion anisotropy indices (DAIs). When comparing tensor morphologies across differing voxels of an image, or across corresponding voxels in different images, DAIs are mathematically and statistically more tractable than are the full tensors, which are probabilistic ellipsoids consisting of three orthogonal vectors that each has a direction and an associated scalar magnitude. We have developed a new DAI, the "ellipsoidal area ratio" (EAR), to represent the degree of anisotropy in the morphological features of a diffusion tensor. The EAR is a normalized geometrical measure of surface curvature in the 3D diffusion ellipsoid. Monte Carlo simulations and applications to the study of in vivo human data demonstrate that, at low noise levels, EAR provides a similar contrast-to-noise ratio (CNR) but a higher signal-to-noise ratio (SNR) than does fractional anisotropy (FA), which is currently the most popular anisotropy index in active use. Moreover, at the high noise levels encountered most commonly in real-world DTI datasets, EAR compared with FA is consistently much more robust to perturbations from noise and it provides a higher CNR, features useful for the analysis of DTI data that are inherently noise sensitive.  相似文献   

15.
In this Letter, a kind of novel model, called the generalized Takagi-Sugeno (T-S) fuzzy model, is first developed by extending the conventional T-S fuzzy model. Then, a simple but efficient method to control fractional order chaotic systems is proposed using the generalized T-S fuzzy model and adaptive adjustment mechanism (AAM). Sufficient conditions are derived to guarantee chaos control from the stability criterion of linear fractional order systems. The proposed approach offers a systematic design procedure for stabilizing a large class of fractional order chaotic systems from the literature about chaos research. The effectiveness of the approach is tested on fractional order Rössler system and fractional order Lorenz system.  相似文献   

16.
By using spatial averaging methods, in this work we derive a Darcy's-type law from a fractional Newton's law of viscosity, which is intended to describe shear stress phenomena in non-homogeneous porous media. As a prerequisite towards this end, we derive an extension of the spatial averaging theorem for fractional-order gradients. The usage of this tool for averaging continuity and momentum equations yields a Darcy's law with three contributions: (i) similar to the classical Darcy's law, a term depending on macroscopic pressure gradients and gravitational forces; (ii) a fractional convective term induced by spatial porosity gradients; and (iii) a fractional Brinkman-type correction. In the three cases, the corresponding permeability tensors should be computed from a fractional boundary-value problem within a representative cell. Consistency of the resulting Darcy's-type law is demonstrated by showing that it is reduced to the classical one in the case of integer-order velocity gradients and homogeneous porous media.  相似文献   

17.
In this paper, the authors have studied the dynamics of a novel complex chaotic system with fractional order derivative and found the existence of chaos. The novel complex system is simulated for integer as well as fractional orders which shows some unusual phenomena. The main contribution of this effort is an implementation of the Largest Lyapunov Exponent (LLE) criteria based on Wolf’s algorithm. The conditions for chaos control based on the fractional Routh–Hurwitz stability conditions and feedback control are given. Also synchronization between a fractional order novel chaotic system and a controlled fractional order novel system using the modified adaptive projective synchronization method for different scaling matrices has been obtained. Numerical simulation results are carried out using the Adams–Bashforth–Moulton method.  相似文献   

18.
In this paper, based on the stability theorems in fractional differential equations, a necessary condition is given to check the existence of 1-scroll, 2-scroll or multi-scroll chaotic attractors in a fractional order system. This condition is proposed for incommensurate order systems in general, but in the special case it converts to the condition given in the previous works for the commensurate fractional order systems. Though the presented condition is only a necessary (and not sufficient) condition for the existence of chaos it can be used as a powerful tool to distinguish for what parameters and orders of a given fractional order system, chaotic attractors can not be observed and for what parameters and orders, the system may generate chaos. It can also be used as a tool to confirm or reject results of a numerical simulation. Some of the numerical results reported in the previous literature are confirmed by this tool.  相似文献   

19.
This Letter applies the modified He's homotopy perturbation method (HPM) suggested by Momani and Odibat to obtaining solutions of linear and nonlinear fractional diffusion and wave equations. The fractional derivative is described in the Caputo sense. Some illustrative examples are given, revealing the effectiveness and convenience of the method.  相似文献   

20.
Computation offloading in mobile edge computing (MEC) systems emerges as a novel paradigm of supporting various resource-intensive applications. However, the potential capabilities of MEC cannot be fully unleashed when the communication links are blocked by obstacles. This paper investigates a double-reconfigurable-intelligent-surfaces (RISs) assisted MEC system. To efficiently utilize the limited frequency resource, the users can partially offload their computational tasks to the MEC server deployed at base station (BS) by adopting non-orthogonal multiple access (NOMA) protocol. We aim to minimize the energy consumption of users with limited resource by jointly optimizing the transmit power of users, the offloading fraction of users and the phase-shifts of RISs. Since the problem is non-convex with highly coupled variables, the block coordinate descent (BCD) method is leveraged to alternatively optimize the decomposed four subproblems. Specifically, we invoke successive convex approximation for low complexity (SCALE) and Dinkelbach technique to tackle the fractional programming of power optimization. Then the offloading fraction is obtained by closed-form solution. Further, we leverage semidefinite relaxation (SDR) and bisection method to address the phase-shifts design of double RISs. Finally, numerical results illustrate that the proposed double-RIS assisted NOMA scheme is capable of efficiently reducing the energy consumption and achieves significant performance gain over the benchmark schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号