首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a new model of the three-terminal quantum dot hybrid thermoelectric heat engine in which the electrons transfer between two electronic terminals at different temperatures and chemical potentials through two coupled single-level quantum dots. Based on master equation we derive the expressions for the output power and the efficiency. The working region of the hybrid heat engine is determined according to the first and second law of thermodynamics. The performance characteristic curves are plotted and the optimal performance parameters are obtained. Finally, the influence of the non-radiative effect on the optimal performance parameters is discussed in detail.  相似文献   

2.
Ballistic transport in an open small (100 nm) three-terminal quantum dot has been analyzed. The dot is based on the high-mobility 2D electron gas of the AlGaAs/GaAs heterojunction. It has been shown that the gate oscillations of the resistance of such a dot arise due to the coherent scattering of electrons on its quasidiscrete levels and these oscillations are suppressed by a weak magnetic field.  相似文献   

3.
This paper presents a theoretical analysis for the dark current characteristics of different quantum infrared photodetectors. These quantum photodetectors are quantum dot infrared photodetectors (QDIP), quantum wire infrared photodetectors (QRIP), and quantum well infrared photodetectors (QWIP). Mathematical models describing these devices are introduced. The developed models accounts for the self-consistent potential distribution. These models are taking the effect of donor charges on the spatial distribution of the electric potential in the active region. The developed model is used to investigate the behavior of dark current with different values of performance parameters such as applied voltage, number of quantum wire (QR) layers, QD layers, lateral characteristic size, doping quantum wire density and temperature. It explains strong sensitivity of dark current to the density of QDs/QRs and the doping level of the active region. In order to confirm our models and their validity on the practical applications, a comparison between the results obtained by proposed models and that experimentally published are conducted and full agreement is observed. Several performance parameters are tuned to enhance the performance of these quantum photodetectors through the presented modeling. The resultant performance characteristics and comparison among them are presented in this work. From the obtained results we notice that the total dark current in the QRIPs can be significantly lower than that in the QWIPs. Moreover, main features of the QRIPs such as the large gap between the induced photocurrent and dark current open the way for overcoming the problems of quantum dot infrared photodetectors.  相似文献   

4.
We study current fluctuations in an interacting three-terminal quantum dot with ferromagnetic leads. For appropriately polarized contacts, the transport through the dot is governed by dynamical spin blockade, i.e., a spin-dependent bunching of tunneling events not present in the paramagnetic case. This leads, for instance, to positive zero-frequency cross correlations of the currents in the output leads even in the absence of spin accumulation on the dot. We include the influence of spin-flip scattering and identify favorable conditions for the experimental observation of this effect with respect to polarization of the contacts and tunneling rates.  相似文献   

5.
Within the framework of non-equilibrium Green’s functions, we investigate the spin-dependent Andreev reflection (AR) in a three-terminal Aharonov-Bohm interferometer with double quantum dot, taking account of the coherent indirect coupling via the superconducting reservoir. It is found that the time-reversal symmetry is broken by the crossed Andreev reflection (CAR) process, and moreover that the spin-value effect of the linear conductance, the spin-polarised AR current, and a pure spin current can be generated by means of the normal AR and the CAR. Expressions for the AR conductances (the transport coefficients) governing the AR properties of this system are derived analytically. The effect of the coherent indirect coupling on the conductance, the Andreev reflected tunneling magnetoresistance (ARTMR), and the spin-related current in the presence of the AR are amply analyzed. Our results indicate that the optimal properties of this system can be realised by tuning the external parameters.  相似文献   

6.
We propose a Rashba three-terminal double-quantum-dot device to generate a spin-polarized current and manipulate the electron spin in each quantum dot by utilizing the temperature gradient instead of the electric bias voltage. This device possesses a nonresonant tunneling channel and two resonant tunneling channels. The Keldysh nonequilibrium Green's function techniques are employed to determinate the spin-polarized current flowing from the electrodes and the spin accumulation in each quantum dot. We find that their signs and magnitudes are well controllable by the gate voltage or the temperature gradient. This result is attributed to the change in the slope of the transmission probability at the Fermi levels in the low-temperature region. Importantly, an obviously pure spin current can be injected into or extracted from one of the three electrodes by properly choosing the temperature gradient and the gate voltages. Therefore, the device can be used as an ideal thermal generator to produce a pure spin current and manipulate the electron spin in the quantum dot.  相似文献   

7.
Thermally driven heat pump systems play important roles in the utilization of low-grade thermal energy. In order to evaluate and compare the performances of three different constructions of thermally driven heat pump and heat transformer, the low-dissipation assumption has been adopted to establish the irreversible thermodynamic models of them in the present paper. By means of the proposed models, the heating loads, the coefficients of performance (COPs) and the optimal relations between them for various constructions are derived and discussed. The performances of different constructions are numerically assessed. More importantly, according to the results obtained, the upper and lower bounds of the COP at maximum heating load for different constructions are generated and compared by the introduction of a parameter measuring the deviation from the reversible limit of the system. Accordingly, the optimal constructions for the low-dissipation three-terminal heat pump and heat transformer are determined within the frame of low-dissipation assumption, respectively. The optimal constructions in accord with previous research and engineering practices for various three-terminal devices are obtained, which confirms the compatibility between the low-dissipation model and endoreversible model and highlights the validity of the application of low-dissipation model for multi-terminal thermodynamic devices. The proposed models and the significant results obtained enrich the theoretical thermodynamic model of thermally driven heat pump systems and may provide some useful guidelines for the design and operation of realistic thermally driven heat pump systems.  相似文献   

8.
We investigate theoretically the dynamics of a charge qubit (double quantum dot system) coupled electrostatically with the double-dot detector. The qubit charge oscillations and the detector current are calculated using the equation of motion method for appropriate correlation functions. In order to find the best detector performance (i.e. the detector current signal follows as well as possible the qubit charge oscillations) we consider different qubit-detector geometries. The optimal setup was found for the qubit lying parallel to the detector quantum dots for which we observed very good detector performance together with weak decoherence of the system. It is also shown that the asymptotic detector current (flowing in response to the limited in time qubit-detector interaction) fully reproduces the qubit dynamics.  相似文献   

9.
The paper presents a method for modeling quantum laser sources. Quantum cascaded (QC), quantum dot (QD) and quantum dot cascaded (QDC) lasers are studied. Their block diagram models are devised. VisSim environment is used to achieve this purpose. Block diagram simulation results are validated against experimental published work and full agreements are obtained. Using of graphical user interface allows a quick experimentation with alternative values of performance parameters such as number of periods, life time ratio, and dipole matrix element of laser sources. Moreover, implicit solutions of dynamic equations governing laser sources provide exact handling of the device performance. Analytical treatment is also conducted. This explicit solution showed less accurate representation of the studied laser sources compared to block diagram models. Several performance parameters are tuned to enhance the performance of these laser sources through the presented methodology. The resultant performance characteristics and comparison among quantum laser sources are presented in this work.  相似文献   

10.
We study the thermal entanglement and teleportation using quantum dot as the quantum channel. We firstly investigate the evolution of entanglement in the vertical quantum dot, then focus on the effects of the important parameters of the system on the teleported fidelity under different conditions. We obtain the critical temperature of suddenly dead entanglement. Based on Bell measurements in two subspaces, the isotropy and anisotropy subspaces, we can find that the anisotropy measurements always overmatch the isotropy ones. Moreover, we obtain the high-fidelity teleportation for quantum dot as quantum channel when the parameters are adjusted. The possible applications of quantum dot are expected in quantum teleportation  相似文献   

11.
Ju Peng 《Physics letters. A》2008,372(21):3878-3881
We theoretically report a nonlocal Andreev reflection in an Aharonov-Bohm interferometer, which is a three-terminal normal metal/superconductor (NS) mesoscopic hybrid system. It is found that this nonlocal Andreev reflection is sensitive to the systematic parameters, such as the bias voltages, the quantum dot levels, and the external magnetic flux. If we set the chemical potential of one normal metal lead equal to zero, the electronic current in the lead results from two competing processes: the quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero electronic current signals unambiguously the existence of this nonlocal Andreev reflection.  相似文献   

12.
Semiconductor quantum dots are among the leading candidates for next-generation nanoscale devices due to their tunable size, shape, and low energy consumption. Here we apply quantum optimal control theory to coherently manipulate the single-electron charge distribution in quantum-dot lattices of various sizes. In particular, we show that to control the charge distribution it is sufficient to optimize the gate voltage acting on a single quantum dot in the lattice. We generally find yields around 99% in the picosecond time scale when using realistic models for the quantum-dot lattices on a real-space grid. We analyze and discuss both the limitations of the model regarding the gate parameters as well as the potential of the scheme for applications as quantum-dot cellular automata.  相似文献   

13.
Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by means of the numerical renormalization group technique, we study the quantum phase transition and the charge transport for a parallel triple dot device in the strongly correlated limit, focusing on the effect of inter-dot hopping t beyond the Kondo regime. We find the quantum behaviors depend closely on the initial electron number on the dots, and the present model may map to single,double, and side-coupled impurity models in different parameter spaces. An orbital spin-1/2 Kondo effect between the conduction leads and the bonding orbital, and several magnetic-frustration phases are demonstrated when t is adjusted to different regimes. To understand these phenomena, a canonical transformation of the energy levels is given, and important physical quantities with respect to increasing t and necessary theoretical discussions are shown.  相似文献   

14.
Engineering the spectral properties of quantum dots can be achieved by a control of the quantum dots organization on a substrate. Indeed, many applications of quantum dots as LEDs are based on the realization of a 3D architecture of quantum dots. In this contribution, we present a systematic study of the quantum dot organization obtained on different chemically modified substrates. By varying the chemical affinity between the quantum dots and the substrate, the quantum dot organization is strongly modified from the 2D monolayer to the 3D aggregates. Then the photoluminescence of the different obtained samples has been systematically studied and correlated with the quantum dot film organization. We clearly show that the interaction between the substrate and the quantum dot must be stronger than the quantum dot–quantum dot interaction to avoid 3D aggregation and that these organization strongly modified the photoluminescence of the film rather than intrinsic changes of the quantum dot induced by pure surface chemistry.  相似文献   

15.
In this paper, we study four electrons confined in a parabolic quantum dot in the absence of magnetic field, by the exact diagonalization method. The ground-state electronic structures and orbital and spin angular momenta transitions as a function of the confined strength are investigated. We find that the confinement may cause accidental degeneracies between levels with different low-lying states and the inversion of the energy values. The present results are useful to understand the optical properties and internal electron-electron correlations of quantum dot materials.  相似文献   

16.
We study theoretically the transmission through a quantum dot molecule embedded in the arms of an Aharonov-Bohm four quantum dot ring threaded by a magnetic flux. The tunable molecular coupling provides a transmission pathway between the interferometer arms in addition to those along the arms. From a decomposition of the transmission in terms of contributions from paths, we show that antiresonances in the transmission arise from the interference of the self-energy along different paths and that application of a magnetic flux can produce the suppression of such antiresonances. The occurrence of a period of twice the quantum of flux arises at the opening of the transmission pathway through the dot molecule. Two different connections of the device to the leads are considered and their spectra of conductance are compared as a function of the tunable parameters of the model.  相似文献   

17.
We present a detailed design method of quantum dot-organic light emitting devices (QD-OLED) based on microcavity model. CdTe quantum dot is used as an emissive layer for blue, green and red emissions. We have simulated the internal photoluminescence emissions of the quantum dot layer by Gaussian function based on the published experimental results. Using these simulated internal photoluminescence emissions for different quantum dot sizes we have calculated the output emissions intensities of blue, green and red lights. We have investigated the effect of changing the device geometry on the emission intensity. We found that the emission intensity is highly depends on the device geometry. On the other hand, we found that the optimizations of the device structure are different for different emissions colors.  相似文献   

18.
Huan Yang 《中国物理 B》2022,31(9):90302-090302
The important applications of quantum dot system are to implement logic operations and achieve universal quantum computing based on different quantum nonlocalities. Here, we characterize the quantum steering, Bell nonlocality, and nonlocal advantage of quantum coherence (NAQC) of quantum dot system suffering nonunital and unital channels. The results reveal that quantum steering, Bell nonlocality, and NAQC can display the traits of dissipation, enhancement, and freezing. One can achieve the detections of quantum steering, Bell nonlocality, and NAQC of quantum dot system in different situations. Among these quantum nonlocalities, NAQC is the most fragile, and it is most easily influenced by different system parameters. Furthermore, considering quantum dot system coupling with amplitude damping channel and phase damping channel, these quantum nonlocalities degenerate with the enlargement of the channel parameters $t$ and $\varGamma$. Remarkably, measurement reversal can effectively control and enhance quantum steering, Bell nonlocality, and NAQC of quantum dot system suffering from decoherence, especially in the scenarios of the amplitude damping channel and strong operation strength.  相似文献   

19.
量子点器件技术广泛应用于量子计算和光电器件上.成核位置的均匀性、有序性和尺寸一致性,可以有效提高光电器件性能.为了实现阵列量子点的可控性,本文采用湿法刻蚀制备图形化衬底,理论上解释了铟原子在图形化衬底上成核现象,产生有序的量子点分布特征,发现图形衬底的缺陷诱导在平台边缘和沟壑边缘成核,形成较大的量子点.在Stranski-Krastanow模式下图形衬底制备多周期量子点,发现多周期生长可以弱化台阶结构对量子点分布的限制作用.  相似文献   

20.
We study level mixing in the single-particle energy spectrum of one of the constituent quantum dots in a vertical double quantum dot by performing magneto-resonant-tunneling spectroscopy. The device used in this study differs from previous vertical double quantum dot devices in that the single side gate is now split into four separate gates. Because of the presence of natural perturbations caused by anharmonicity and anisotropy, applying different combinations of voltages to these gates allows us to alter the effective potential landscape of the two dots and hence influence the level mixing. We present here preliminary results from one three level crossing and one four level crossing high up in the energy spectrum of one of the probed quantum dots, and demonstrate that we are able to change significantly the energy dispersions with magnetic field in the vicinity of the crossing regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号