首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The time evolution of a charge qubit coupled electrostatically with different detectors in the forms of single, double and triple quantum dot linear systems in the T-shaped configuration between two reservoirs is theoretically considered. The correspondence between the qubit quantum dot oscillations and the detector current is studied for different values of the inter-dot tunneling amplitudes and the qubit–detector interaction strength. We have found that even for a qubit coupled with a single QD detector, the coherent beat patterns appear in the oscillations of the qubit charge. This effect is more evident for a qubit coupled with double or triple-QD detectors. The beats can be also observed in both the detector current and the detector quantum dot occupations. Moreover, in the presence of beats the qubit oscillations hold longer in time in comparison with the beats-free systems with monotonously decaying oscillations. The dependence of the qubit dynamics on different initial occupations of the detector sites (memory effect) is also analyzed.  相似文献   

2.
李新奇 《物理》2006,35(1):56-58
文章介绍了作者用介观输运器件[如量子点接触(QPC)或单电子晶体管(SET)]测量固态量子比特的原理和特性,特别着重地介绍了作者最近在处理被测量子比特和介观测量仪器之间的关联方面的新进展。  相似文献   

3.
We study the dynamics of a charge qubit, consisting of a single electron in a double well potential coupled to a point-contact (PC) electrometer, using the quantum trajectories formalism. Contrary to previous predictions, we show formally that, in the sub-Zeno limit, coherent oscillations in the detector output are suppressed, and the dynamics is dominated by inelastic processes in the PC. Furthermore, these reduce the detector efficiency and induce relaxation even when the source-drain bias is zero. This is of practical significance since it means the detector will act as a source of decoherence. Finally, we show that the sub-Zeno dynamics is divided into two regimes: low and high bias in which the PC current power spectra show markedly different behavior.  相似文献   

4.
We analyze the dynamics of a continuously observed, damped, microwave-driven solid state charge qubit, consisting of a single electron in a double well potential. The microwave field induces transitions between the qubit eigenstates, which have a profound effect on the detector output current. Useful information about the qubit dynamics, such as dephasing and relaxation rates, and the Rabi frequency, can be extracted from the detector conductance and output noise power spectrum. We also propose a technique for single-shot electron spin readout, for spin based quantum information processing, which has a number of practical advantages over existing schemes.  相似文献   

5.
We investigate coherent time evolution of charge states (pseudospin qubit) in a semiconductor double quantum dot. This fully tunable qubit is manipulated with a high-speed voltage pulse that controls the energy and decoherence of the system. Coherent oscillations of the qubit are observed for several combinations of many-body ground and excited states of the quantum dots. Possible decoherence mechanisms in the present device are also discussed.  相似文献   

6.
Landau-Zener (LZ) tunneling can occur with a certain probability when crossing energy levels of a quantum two-level system are swept across the minimum energy separation. Here we present experimental evidence of quantum interference effects in solid-state LZ tunneling. We used a Cooper-pair box qubit where the LZ tunneling occurs at the charge degeneracy. By employing a weak nondemolition monitoring, we observe interference between consecutive LZ-tunneling events; we find that the average level occupancies depend on the dynamical phase. The system's unusually strong linear response is explained by interband relaxation. Our interferometer can be used as a high-resolution Mach-Zehnder-type detector for phase and charge.  相似文献   

7.
We study quantum coherence in a semiconductor charge qubit formed from a GaAs double quantum dot containing a single electron. Voltage pulses are applied to depletion gates to drive qubit rotations and noninvasive state readout is achieved using a quantum point contact charge detector. We measure a maximum coherence time of ~7 ns at the charge degeneracy point, where the qubit level splitting is first-order insensitive to gate voltage fluctuations. We compare measurements of the coherence time as a function of detuning with numerical simulations and predictions from a 1/f noise model.  相似文献   

8.
We have realized a tunable coupling over a large frequency range between an asymmetric Cooper pair transistor (charge qubit) and a dc SQUID (phase qubit). Our circuit enables the independent manipulation of the quantum states of each qubit as well as their entanglement. The measurement of the charge qubit's quantum states is performed by an adiabatic quantum transfer from the charge to the phase qubit. The measured coupling strength is in agreement with an analytic theory including a capacitive and a tunable Josephson coupling between the two qubits.  相似文献   

9.
We introduce a theoretical formalism describing a wide class of ‘Which Path’ experiments in mesoscopic/nanoscopic transport. The physical system involves a mesoscopic interferometer (e.g. an Aharonov-Bohm ring with embedded dots or a side-coupled quantum dot) which is electrostatically coupled to a nearby quantum point constriction. Due to the charge sensing effect the latter acts as a charge detector. Therefore the interference pattern can be monitored indirectly by looking at the current characteristics of the detector as shown in the experimental work of Buks et al. [E. Buks, R. Schuster, M. Heiblum, D. Mahalu, V. Umansky, Nature (London) 391 (1998) 871]. We use the non-equilibrium Green-Keldysh formalism and a second order perturbative treatment of the Coulomb interaction in order to compute the relevant transport properties. It is shown that in the presence of the Coulomb interaction the current through the detector exhibits oscillations as a function of the magnetic field applied on a single-dot AB interferometer. We also discuss the dependence of the visibility of the Aharonov-Bohm oscillations on the gate potential applied to the dot.  相似文献   

10.
A kicked quantum nondemolition measurement is introduced, where a qubit is weakly measured by pumping current. Measurement statistics are derived for weak measurements combined with single-qubit unitary operations. These results are applied to violate a generalization of the Leggett-Garg inequality. The violation is related to the failure of the noninvasive detector assumption, and may be interpreted as either intrinsic detector backaction, or the qubit entangling the microscopic detector excitations. The results are discussed in terms of a quantum point contact kicked by a pulse generator, measuring a double quantum dot.  相似文献   

11.
We study the influence of screening effect on quantum decoherence for charge qubit and the process of quantum information storage. When the flux produced by the circulating current in SQUID loop is considered, screening effect is formally characterized by a LC resonator. Using large-detuning condition and Fröhlich transformation in the qubit-cavity-resonator system, we calculate the decoherence factor for charge qubit and the effective qubit-cavity Hamiltonian. The decoherence factor owns a factorized structure, it shows that screening effect is a resource of decoherence for charge qubit. The effective Hamiltonian shows that the screening effect results in a frequency shift for charge qubit and a modified qubit-cavity coupling constant induced by a LC resonator.  相似文献   

12.
We report on the observation of new features in a superconducting charge qubit system. The system we analyze comprises of a single Cooper-pair box sequentially coupled to two microwave cavity fields. Simulations of the full qubit–field dynamics show significant total correlation and coherence loss. By suitably choosing the system’s parameters and precisely controlling the dynamics, we demonstrate the generation of two-mode field states. We explore the nonclassical behavior of the system by studding the quasi-probability distribution function. Our scheme can be realized within the current experimental technology and may well be of use in quantum information processing applications.  相似文献   

13.
We propose a novel quantum device in which a double carbon nanotube is embedded inside a suspended semiconductor slab. We theoretically investigate, in terms of a perturbation treatment based on a unitary transformation, the dynamics of the charge qubit in relation to the device. The phonon-induced decoherence and the quality of the qubit are analyzed in detail after a derivation of the phonon spectral density. It is shown that a charge qubit of high quality can be obtained due to the inhibition of the electron–phonon coupling in the confined structure of the slab, suggesting that the novel quantum device is a good candidate for quantum information processing.  相似文献   

14.
In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD.  相似文献   

15.
Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time TRabi =- 78 ns and energy relaxation time T~ = 315 ns. We found that the value of TRabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits.  相似文献   

16.
We propose a scheme to implement quantum state transfer in a hybrid circuit quantum electrodynarnics (QED) system which consists of a superconducting charge qubit, a flux qubit, and a transmission line resonator (TLR). It is shown that quantum state transfer between the charge qubit and the flux qubit can be realized by using the TLR as the data bus.  相似文献   

17.
A hybrid quantum computing scheme is studied where the hybrid qubit is made of an ion trap qubit serving as the information storage and a solid-state charge qubit serving as the quantum processor, connected by a superconducting cavity. In this paper, we extend our previous work [CITE] and study the decoherence, coupling and scalability of the hybrid system. We present our calculations of the decoherence of the coupled ion-charge system due to the charge fluctuations in the solid-state system and the dissipation of the superconducting cavity under laser radiation. A gate scheme that exploits rapid state flips of the charge qubit to reduce decoherence by the charge noise is designed. We also study a superconducting switch that is inserted between the cavity and the charge qubit and provides tunable coupling between the qubits. The scalability of the hybrid scheme is discussed together with several potential experimental obstacles in realizing this scheme.  相似文献   

18.
In this paper, taking the theory of quantum information as a model, we consider the human unconscious, pre-consciousness and consciousness as sets of quantum bits (qubits). We view how there can be communication between these various qubit sets. In doing this we are inspired by the theory of nuclear magnetic resonance. In this way we build a model of handling a mental qubit with the help of pulses of a mental field. Starting with an elementary interaction between two qubits we build two-qubit quantum logic gates that allow information to be transferred from one qubit to the other. In this manner we build a quantum process that permits consciousness to “read” the unconscious and vice versa. The elementary interaction, e.g. between a pre-consciousness qubit and a consciousness one, allows us to predict the time evolution of the pre-consciousness + consciousness system in which pre-consciousness and consciousness are quantum entangled. This time evolution exhibits Rabi oscillations that we name mental Rabi oscillations. This time evolution shows how for example the unconscious can influence consciousness. In a process like mourning the influence of the unconscious on consciousness, as the influence of consciousness on the unconscious, are in agreement with what is observed in psychiatry.  相似文献   

19.
We propose a single shot quantum measurement to determine the state of a Josephson charge quantum bit (qubit). The qubit is a Cooper pair box and the measuring device is a two junction superconducting quantum interference device (dc SQUID). This coupled system exhibits a close analogy with a Rydberg atom in a high Q cavity, except that in the present device we benefit from the additional feature of escape from the supercurrent state by macroscopic quantum tunneling, which provides the final readout. We test the feasibility of our idea against realistic experimental circuit parameters and by analyzing the phase fluctuations of the qubit.  相似文献   

20.
Under resonant irradiation, a quantum system can undergo coherent (Rabi) oscillations in time. We report evidence for such oscillations in a continuously observed three-Josephson-junction flux qubit, coupled to a high-quality tank circuit tuned to the Rabi frequency. In addition to simplicity, this method of Rabi spectroscopy enabled a long coherence time of about 2.5 micros, corresponding to an effective qubit quality factor approximately 7000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号