首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
曲灵丰  侯清玉  赵春旺 《物理学报》2016,65(3):37103-037103
对于Y掺杂ZnO,当摩尔数在0.0313-0.0625之内,Y掺杂量越增加,吸收光谱发生红移和蓝移两种不同实验结果均有文献报道.本文使用Materials Studio软件下的CASTEP模块中密度泛函理论的第一性原理平面波模守恒(Norm conserving)赝势GGA+U的方法,构建了未掺杂纤锌矿ZnO单胞以及Y掺杂ZnO的Zn_(0.9687)Y_(0.0313)O超胞、Zn_(0.9583)Y_(0.0417)O超胞和Zn_(0.9375)Y_(0.0625)O超胞模型.对掺杂前后体系的能带结构、态密度、差分电荷密度、布居值以及吸收光谱进行了计算.计算结果表明:当Y掺杂摩尔数在0.0313-0.0625之内,Y掺杂量越增加,掺杂体系的晶格常数、体积、总能量越增大,掺杂体系越不稳定、形成能越增大、掺杂越难;掺杂体系中平行于和垂直于c轴的Y-O键布居值越减小、离子键越增强、共价键越减弱、键长越变长;掺杂体系的最小光学带隙越变宽、吸收光谱发生蓝移现象越明显.吸收光谱的计算结果与实验结果相符合,合理解释了吸收光谱红移、蓝移的争论.这对制备Y掺杂ZnO短波长光学器件能起到一定的理论指导作用.  相似文献   

2.
侯清玉  曲灵丰  赵春旺 《物理学报》2016,65(5):57401-057401
与本文相近的Al-2N掺杂量的范围内, 对ZnO掺杂体系吸收光谱分布红移和蓝移两种实验结果均有文献报道, 但是, 迄今为止对吸收光谱分布尚未有合理的理论解释. 为了解决该问题, 本文采用基于密度泛函理论的广义梯度近似 平面波超软赝势方法, 用第一性原理构建了两种不同掺杂量的Zn0.98148Al0.01852O0.96296N0.03704和Zn0.96875Al0.03125O0.9375N0.0625超胞模型. 在几何结构优化的基础上, 对模型能带结构分布、态密度分布和吸收光谱分布进行了计算. 计算结果表明, 在本文限定的掺杂量范围内, Al-2N掺杂量越增加, 掺杂体系的体积越减小, 体系总能量越升高, 体系稳定性越下降, 形成能越升高, 掺杂越难; 所有掺杂体系均转化为简并p型化半导体, 掺杂体系最小光学带隙均变窄,吸收光谱均发生红移; 同时发现掺杂量越增加, 掺杂体系最小光学带隙变窄越减弱, 吸收光谱红移越减弱. 研究表明: 要想实现Al-2N共掺在ZnO中最小光学带隙变窄、掺杂体系发生红移现象, 除了限制掺杂量外, 尺度长短也应限制; 其次, Al-2N掺杂量越增加,掺杂体系空穴的有效质量、浓度、 迁移率、电导率越减小,掺杂体系导电性能越减弱. 计算结果与实验结果的变化趋势相符合. 研究表明, Al-2N共掺在ZnO中获得的新型半导体材料可以用作低温端的温差发电功能材料.  相似文献   

3.
在掺杂量为1.04 at%-1.39 at%的范围内,Ti掺杂ZnO体系吸收光谱分布和电导率的实验结果存在争议均有文献报道,但是,迄今为止,对此未有合理的理论解释.为了解决存在的争议,本文采用基于密度泛函理论的广义梯度近似平面波超软赝势GGA+U的方法,用第一性原理构建了两种不同掺杂量Zn_(0.9792)Ti_(0.0208)O和Zn_(0.9722)Ti_(0.0278)O超胞模型,所有模型在几何结构优化的基础上,对能带结构分布,态密度分布和吸收光谱分布进行了计算.计算结果表明:在本文限定的掺杂量范围内,Ti掺杂量越增加,掺杂体系体积越增加,体系总能量越升高,体系稳定性越下降,形成能越升高,掺杂越难,掺杂体系布居值减小,Ti-O键长变长,共价键减弱,离子键增强,所有掺杂体系均转化为n型化简并半导体;掺杂体系带隙越变宽,吸收光谱蓝移越显著,电子有效质量越增加,电子浓度越增加,电子迁移率越减小,电子电导率越减小,掺杂体系导电性能越差.计算结果与实验结果相符合.对存在的问题进行了合理的理论解释.对Ti掺杂ZnO光电功能材料的设计和制备有一定的理论指导作用.  相似文献   

4.
许镇潮  侯清玉 《物理学报》2015,64(15):157101-157101
目前, 当Ag掺杂ZnO摩尔数为0.0208-0.0278的范围内, Ag掺杂对ZnO吸收光谱影响的实验研究均有文献报道, 但是, 有两种不同的实验结果, 掺杂体系吸收光谱红移或蓝移两种相悖的报道. 为了解决本问题, 本文采用自旋密度泛函理论(DFT)框架下的广义梯度近似(GGA+U)平面波赝势方法, 构建三种Zn1-xAgxO (x=0, x=0.0278, x=0.0417)模型, 分别对所有模型进行几何结构优化和能量计算. 结果表明, 与纯的ZnO布居值和Zn-O的键长相比, 掺杂体系布居值减小、Ag-O键长增加、共价键减弱、离子键增强. 当Ag掺杂ZnO摩尔数为0.0278-0.0417的范围内, Ag掺杂量越增加、O原子2p轨道、Zn原子的4s, 3d轨道电荷数不变、Ag原子的5s轨道电荷数越增加、Ag原子的4d轨道电荷数越减小、掺杂体系晶格常数越增加、体积越增加、总能量越增加、稳定性越下降、形成能越下降、掺杂越难、掺杂体系的带隙越变窄、吸收光谱红移越显著. 计算结果与实验结果相一致. 并且合理解释了存在的问题. 这对设计和制备Ag掺杂ZnO体系的光催化剂有一定的理论指导作用.  相似文献   

5.
侯清玉  贾晓芳  许镇潮  赵春旺 《物理学报》2017,66(11):117401-117401
在掺杂浓度范围为2.78%—6.25%(物质的量分数)时,Ni掺杂ZnO体系吸收光谱分布的实验结果存在争议,目前仍然没有合理的理论解释.为了解决存在的争议,在电子自旋极化状态下,采用密度泛函理论框架下的第一性原理平面波超软赝势方法,构建不同Ni掺杂量的ZnO超胞模型,分别对模型进行几何结构优化和能量计算.结果表明,Ni掺杂量越大,形成能越高,掺杂越难,体系稳定性越低,掺杂体系带隙越窄,吸收光谱红移越显著.采用LDA(局域密度近似)+U方法调整带隙.结果表明,掺杂体系的铁磁性居里温度能够达到室温以上,磁矩来源于p-d态杂化电子交换作用.Ni掺杂量越高,掺杂体系的磁矩越小.另外还发现Ni原子在ZnO中间隙掺杂时,掺杂体系在紫外光和可见光区的吸收光谱发生蓝移现象.  相似文献   

6.
毛斐  侯清玉  赵春旺  郭少强 《物理学报》2014,63(5):57103-057103
目前,Pr掺杂对锐钛矿TiO2带隙和吸收光谱研究结果存在相反的结论,红移和蓝移两种实验结果都有文献报道.为解决这个矛盾,本文基于密度泛函理论框架下的第一性原理平面波超软赝势方法,对纯的和不同浓度Pr高掺杂锐钛矿TiO2的电子结构和吸收光谱进行了计算.计算结果表明,与纯锐钛矿TiO2相比较,Pr掺杂后,掺杂量越增加,掺杂体系各原子电荷量越减小,掺杂体系总能量越高,形成能越大,稳定性越下降,带隙越窄,吸收光谱红移现象越显著,吸收强度越强.计算结果与实验结果相一致.  相似文献   

7.
侯清玉  董红英  马文  赵春旺 《物理学报》2013,62(15):157101-157101
采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法, 建立了纯的和四种不同Ga掺杂量的ZnO超胞模型, 分别对模型进行了几何结构优化、能带结构分布、态密度分布和吸收光谱的计算. 结果表明, 在本文限定的Ga掺杂量2.08 at%–6.25 at%的范围内, 随着Ga掺杂量的增加, 掺杂后的ZnO体系体积变化不是很大, 但是, 掺杂体系ZnO的能量增加, 掺杂体系变得越来越不稳定, 同时, 掺杂体系ZnO的Burstein-Moss 效应越显著, 最小光学带隙变得越宽, 吸收带边越向高能方向移动. 计算结果和实验结果相一致. 关键词: Ga高掺杂ZnO 电子结构 吸收光谱 第一性原理  相似文献   

8.
目前,在V高掺杂ZnO中,当V掺杂量摩尔数为0.03125—0.04167的范围内,掺杂量越增加,电阻率越增加或越减小的两种实验结果均有文献报道.为解决这个矛盾,本文采用密度泛函理论的第一性原理平面波超软赝势方法,构建未掺杂ZnO,V高掺杂的Zn1-xVxO(x=0.03125,0.04167)两种超胞模型,首先,对所有体系进行几何结构优化,在此基础上,采用GGA+U的方法,计算所有体系的能带结构分布、态密度分布、吸收光谱分布.结果表明,当掺杂量摩尔数为0.03125—0.04167的范围内,V掺杂量越增加,掺杂体系体积越增加,总能量越下降,形成能越减小,掺杂体系越稳定,相对电子浓度越减小,迁移率越减小,电导率越减小,最小光学带隙越增加,吸收光谱蓝移越显著.计算结果与实验结果相一致.  相似文献   

9.
侯清玉  吕致远  赵春旺 《物理学报》2014,63(19):197102-197102
目前,在V高掺杂ZnO中,当V掺杂量摩尔数为0.03125–0.04167的范围内,掺杂量越增加,电阻率越增加或越减小的两种实验结果均有文献报道. 为解决这个矛盾,本文采用密度泛函理论的第一性原理平面波超软赝势方法,构建未掺杂ZnO,V高掺杂的Zn1-xVxO (x=0.03125,0.04167) 两种超胞模型,首先,对所有体系进行几何结构优化,在此基础上,采用GGA+U的方法,计算所有体系的能带结构分布、态密度分布、吸收光谱分布. 结果表明,当掺杂量摩尔数为0.03125–0.04167的范围内,V掺杂量越增加,掺杂体系体积越增加,总能量越下降,形成能越减小,掺杂体系越稳定,相对电子浓度越减小,迁移率越减小,电导率越减小,最小光学带隙越增加,吸收光谱蓝移越显著. 计算结果与实验结果相一致. 关键词: V高掺杂ZnO 电导率 吸收光谱 第一性原理  相似文献   

10.
李聪  侯清玉  张振铎  张冰 《物理学报》2012,61(7):77102-077102
采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法,建立了不同Eu掺杂量的锐钛矿相TiO2超胞模型,计算了其态密度、差分电荷密度、能带结构和吸收光谱.结果发现:掺杂后Eu在TiO2的禁带中产生杂质能级.通过对比两种不同Eu掺杂量(1.39at%和2.08at%)下的锐钛矿TiO2的能带结构,发现掺杂量越高,杂质能级越向深能级方向移动,说明电子复合率随杂质浓度增加而增加,即电子寿命变小,同时吸收光谱红移越显著,强度越强.根据实际需要,可在锐钛矿TiO2中适量掺杂Eu,在适当减少电子寿命情况下,使吸收光谱红移.  相似文献   

11.
侯清玉  李文材  赵春旺 《物理学报》2015,64(6):67101-067101
目前, 虽然In和2N共掺对ZnO最小光学带隙和吸收光谱影响的实验研究均有报道, 但是, In和2N共掺在ZnO中均是随机掺杂, 没有考虑利用ZnO的单极性结构进行择优取向共掺, 第一性原理的出现能够解决该问题. 本文采用密度泛函理论框架下的第一性原理平面波超软赝势(GGA+U)方法, 计算了纯的ZnO单胞、择优位向高共掺In–2N原子的Zn1-xInxO1-yNy(x= 0.0625–0.03125, y=0.0625–0.125)八种超胞模型的态密度分布和吸收光谱分布. 计算结果表明, 在相同掺杂方式、不同浓度共掺In-2N的条件下, 掺杂量越增加, 掺杂体系体积越增加、能量越增加, 稳定性越下降、形成能越增加、掺杂越难、掺杂体系最小光学带隙越变窄、吸收光谱红移越显著. 计算结果与实验结果相一致. 在不同掺杂方式、相同浓度共掺In–2N的条件下, In–N沿c轴取向成键共掺与垂直于c轴取向成键共掺体系相比较, 沿c轴取向成键共掺体系最小光学带隙越变窄、吸收光谱红移越显著. 这对设计和制备新型光催化剂功能材料有一定的理论指导作用.  相似文献   

12.
采用平面波超软赝势方法计算了B掺杂锐钛矿型TiO2(101)面的几何结构、缺陷形成能、电子结构和光学性质.分析B掺杂后的几何结构,发现氧化气氛下B易于掺杂间隙1处,还原气氛下易于替位掺杂O3C2.计算了掺杂前后的氧空位VO形成能和替位形成能,得出B掺杂和氧空位相互促进的结论.B掺杂在导带底引入了杂质能级,B的2p态和Ti的3d态发生强烈关联而使带隙变窄,发生红移现象.O空位也使带隙变窄,但未发现红移现象.B掺杂和O空位同时存在则使吸收光谱扩展至整个可见光区.  相似文献   

13.
采用平面波超软赝势方法计算了B掺杂锐钛矿型TiO2(101)面的几何结构、缺陷形成能、电子结构和光学性质.分析B掺杂后的几何结构,发现氧化气氛下B易于掺杂间隙1处,还原气氛下易于替位掺杂O3C2.计算了掺杂前后的氧空位VO形成能和替位形成能,得出B掺杂和氧空位相互促进的结论.B掺杂在导带底引入了杂质能级,B的2p态和Ti的3d态发生强烈关联而使带隙变窄,发生红移现象.O空位也使带隙变窄,但未发现红移现象.B掺杂和O空位同时存在则使吸收光谱扩展至整个可见光区.  相似文献   

14.
基于第一性原理密度泛函理论,计算分析了Hf、N以不同掺杂比例掺杂ZnO(Zn_(16)O_(16))形成Zn_(15)O_(16-x_HfN_x(x=1,2,3,4)体系的结构参数、电子结构、Mulliken电荷布居和光学方面的性质.计算结果表明,掺杂体系晶胞体积不同程度增大;x=1时体系的费米能级上移进入导带使其呈现n型半导体特征,吸收峰和反射峰红移较小,尤其是反射峰,主要表现为强度的变化;但x=2,3,4体系的费米能级均在价带顶附近,且随掺杂比例的增大,掺杂体系的费米能级进入价带的深度逐渐增大,N 2p态的贡献作用也越来越显著,使掺杂体系呈现p型半导体特征,吸收峰和反射峰均有较大的红移,这将有利于ZnO体系在可见光领域的应用.  相似文献   

15.
宫丽  冯现徉  逯瑶  张昌文  王培吉 《物理学报》2012,61(9):97101-097101
采用基于密度泛函理论第一性原理的方法, 研究了Ta掺杂ZnO的电子结构和光学性质. 计算结果表明: 掺入Ta原子后, 费米能级进入导带, 随着掺杂浓度的增加, 带隙逐渐变窄, 介电函数虚部、吸收系数、反射率和折射率均发生明显变化, 介电函数虚部和反射率均向高能方向移动, 吸收边发生红移, 从理论上指出了光学性质和电子结构的内在联系.  相似文献   

16.
郭少强  侯清玉  赵春旺  毛斐 《物理学报》2014,63(10):107101-107101
对于V高掺杂ZnO,当摩尔分数为0.0417—0.0625时,随着掺杂量的增加,吸收光谱出现蓝移减弱和蓝移增强两种不同实验结果均有文献报道.采用密度泛函理论的第一性原理平面波超软赝势方法,构建未掺杂ZnO单胞模型、V高掺杂Zn1-xVxO(x=0.0417,0.0625)两种超胞模型,采用GGA+U方法计算掺杂前后体系的形成能、态密度、分波态密度、磁性和吸收光谱.结果表明,当V的掺杂量(原子含量)为2.083%—3.125%时,随着V掺杂量增加,掺杂体系磁矩增大,磁性增强,并且掺杂体系体积增加,总能量下降,形成能减小,掺杂体系更稳定,同时,掺杂ZnO体系的最小光学带隙增宽,吸收带边向低能级方向移动.上述计算结果与实验结果一致.  相似文献   

17.
侯清玉  董红英  迎春  马文 《物理学报》2013,62(3):37101-037101
采用密度泛函理论框架下的第一性原理平面波超软赝势方法, 建立了未掺杂与不同浓度的Mn原子取代Zn原子的三种Zn1-xMnxO超胞模型, 分别对模型进行了几何结构优化、态密度分布、能带分布和吸收光谱的计算. 结果表明: 电子非自旋极化处理的条件下, Mn掺杂浓度越小, ZnO形成能越小, 掺杂越容易, 晶体结构越稳定; Mn的掺入使得ZnO体系的杂质能带和导带发生简并化, 并且导带底和价带底同时向低能方向移动, 掺杂后的导带比价带下降得少导致禁带宽度变宽, ZnO吸收光谱明显出现蓝移现象, 计算结果和实验结果相一致. 同时, 电子自旋极化处理的条件下, 体系有磁性, 吸收光谱发生红移现象. 计算结果与相关实验结果相符合.  相似文献   

18.
采用密度泛函理论框架下的第一性原理平面波赝势方法,计算单轴应变下闪锌矿氮化铟的电子结构及光学性质.结果表明:施加应变会使带隙变窄.对于拉应变,随着应变增大带隙减小程度增大;对于压应变,随应变增大带隙减小程度减弱;且拉、压应变对带隙调控都是线性的.在能量区间4 eV~12 eV范围内施加应变时,氮化铟的吸收光谱发生红移,随拉应变程度增加,吸收光谱的红移进一步加大;随压应变增加,吸收光谱红移减弱;在该范围内,氮化铟的折射率、反射率随拉应变的增大而增加,随压应变增加减小;施加拉应变时能量损失函数峰值增大,施加压应变后能量损失函数峰值减小.通过施加单轴应变能有效调节氮化铟材料的电结构及光学性质.  相似文献   

19.
采用密度泛函理论框架下的第一性原理计算方法,利用广义梯度近似和Perdew-Burke-Ernzerdorf泛函,计算了不同Sn掺杂浓度下SZO(Sn∶ZnO)体系的电子结构与光学性质.研究了Sn掺杂浓度对SZO(Sn∶ZnO)的晶体结构、能带结构、电子态密度及光学性质的影响,并结合计算的能带结构和差分电荷密度对比分析了掺杂位置对计算结果的影响.研究结果表明,随着Sn掺杂浓度的增加,晶格常数c与a的比值变化很小,掺杂后晶胞没有发生畸变.掺杂体系的能量逐渐增大,稳定性减弱,且随着掺杂浓度的增加,带隙呈现先减小后增大的变化规律.掺杂后的SZO(Sn∶ZnO)成为间接带隙半导体,在导带底部附近出现了大量Sn原子贡献的导电载流子,明显提高了掺杂体系的电导率,并在费米能级附近与价带顶部之间出现一条由Sn原子贡献的杂质能级,能带结构呈现半填满状态,价带部分的电子态密度峰值向低能方向移动约1.5eV.同层掺杂的电子得失程度较大,带隙比相邻层掺杂和隔层掺杂时小.掺杂后吸收带边发生红移,材料对紫外光的吸收能力明显增强,介电常数虚部增大,主要跃迁峰向高能方向移动.计算结果表明SZO(Sn∶ZnO)是一种优良的透明导电薄膜材料.  相似文献   

20.
侯清玉  许镇潮  乌云  赵二俊 《物理学报》2015,64(16):167201-167201
在Cu重掺杂量摩尔数为0.02778–0.16667的范围内, 对ZnO掺杂体系磁电性能影响的第一性原理研究鲜见报道. 采用基于自旋密度泛函理论的平面波超软赝势方法, 用第一性原理计算了两种不同Cu单掺杂量Zn1-xCuxO (x=0.02778, 0.03125)超胞的能带结构分布和态密度分布. 结果表明, 掺杂体系是半金属化的稀磁半导体; Cu掺杂量越增加、相对自由空穴浓度越增加、空穴有效质量越减小、电子迁移率越减小、电子电导率越增加. 此结果利用电离能和Bohr半径进一步获得了证明, 计算结果与实验结果相符合. 在限定的掺杂量0.02778–0.0625 的条件下, Cu单掺杂量越增加、掺杂体系的体积越减小、总能量越升高、稳定性越下降、形成能越升高、掺杂越难. 在相同掺杂量、不同有序占位Cu双掺ZnO体系的条件下, 双掺杂Cu-Cu间距越增加, 掺杂体系磁矩先增加后减小; 当沿偏a轴或b轴方向Cu–O–Cu相近邻成键时, 掺杂体系会引起磁性猝灭; 当沿偏c轴方向Cu–O–Cu相近邻成键时, 掺杂体系居里温度能够达到室温以上的要求. 在限定的掺杂量0.0625–0.16667的条件下, 沿偏c轴方向Cu–O–Cu相近邻成键时, Cu 双掺杂量越增加, 掺杂体系总磁矩先增加后减小. 计算结果与实验结果变化趋势相符合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号