首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
侯清玉  李文材  赵春旺 《物理学报》2015,64(6):67101-067101
目前, 虽然In和2N共掺对ZnO最小光学带隙和吸收光谱影响的实验研究均有报道, 但是, In和2N共掺在ZnO中均是随机掺杂, 没有考虑利用ZnO的单极性结构进行择优取向共掺, 第一性原理的出现能够解决该问题. 本文采用密度泛函理论框架下的第一性原理平面波超软赝势(GGA+U)方法, 计算了纯的ZnO单胞、择优位向高共掺In–2N原子的Zn1-xInxO1-yNy(x= 0.0625–0.03125, y=0.0625–0.125)八种超胞模型的态密度分布和吸收光谱分布. 计算结果表明, 在相同掺杂方式、不同浓度共掺In-2N的条件下, 掺杂量越增加, 掺杂体系体积越增加、能量越增加, 稳定性越下降、形成能越增加、掺杂越难、掺杂体系最小光学带隙越变窄、吸收光谱红移越显著. 计算结果与实验结果相一致. 在不同掺杂方式、相同浓度共掺In–2N的条件下, In–N沿c轴取向成键共掺与垂直于c轴取向成键共掺体系相比较, 沿c轴取向成键共掺体系最小光学带隙越变窄、吸收光谱红移越显著. 这对设计和制备新型光催化剂功能材料有一定的理论指导作用.  相似文献   

2.
侯清玉  吕致远  赵春旺 《物理学报》2015,64(1):17201-017201
目前, 在Nb高掺杂量摩尔数分别为0.050和0.0625的条件下, 对掺杂体系锐钛矿TiO2电阻最低存在相反的两种实验结果都有文献报道. 为解决这个矛盾, 本文采用基于密度泛函理论的平面波超软赝势方法, 计算了纯的单胞和三种不同Nb高掺杂量对锐钛矿Ti1-xNbxO2 (x=0.03125, 0.050, 0.0625)超胞的能带结构分布、态密度分布和光学性质. 结果表明, 在本文限定掺杂量的条件下, Nb掺杂量越增加, 掺杂体系的体积越增加, 总能量越升高, 稳定性越下降, 形成能越升高, 掺杂越难, 相对自由电子浓度越增加, 电子有效质量越增加, 电子迁移率越减小, 电子电导率越减小, 最小光学带隙越变宽, 吸收光谱和反射率向低能方向移动越显著, 透射率越增加. 计算结果与实验结果相吻合.  相似文献   

3.
马荣  张加宏  杜锦丽  刘甦  刘楣 《物理学报》2006,55(12):6580-6584
用全势线性缀加平面波方法,考虑局域自旋密度近似研究虚晶掺杂MgCNi3的超导电性和磁性.计算了自旋极化能带结构、体弹性模量和它对压力的导数、原子磁矩m及其变化率.计算结果表明,对于电子掺杂的Mg1-xAlxCNi3(0≤x≤0.5),超导电性和磁涨落随掺杂量的增加逐渐减小.空穴掺杂的Mg1-xNaxCNi3,在x=0.12处出现铁磁相变,超导电性消失.在MgCNi3少量空穴掺杂区域(0≤x<0.12),表现为超导与磁涨落共存的不稳定状态. 关键词: 超导电性 能带结构 态密度 磁性  相似文献   

4.
姚建刚  宫宝安  王渊旭 《物理学报》2013,62(24):243601-243601
采用基于密度泛函理论中的广义梯度近似,在考虑自旋多重度的情况下,对YnNO(n=1–12)团簇进行了构型优化,以及稳定性和成键特性分析,结果表明:n=5,7,8,10时,NO吸附使相应的Yn团簇基态结构发生了明显变化,吸附后,所有尺寸中的N–O键长明显伸长,振动频率减弱,表明NO在Yn团簇表面发生的是解离性吸附,N–Y,O–Y键的共同作用使YnNO团簇具有很大的吸附能;特别是n=3,5,8时,N–O键断裂,吸附能值分别为9.92,9.24,9.82 eV. YnNO和Yn 的二阶能量差分变化趋势表明,NO 吸附对Yn团簇稳定性和成键特性均产生较大影响. N,O原子sp3轨道杂化时孤对电子的出现导致N–O键断裂,增强了N–Y和O–Y间的成键能力,使Y3NO,Y5NO,Y8NO团簇表现出了很好的稳定性. 关键词: 团簇 NO吸附 基态结构 稳定性  相似文献   

5.
在空气环境中采用固相反应方法制备出三种A位Ca掺杂自旋梯状结构化合物(Sr1-xCax)14Cu24O41-δ样品(x=0,0.25,0.43)能量损失谱(EDS)分析表明,该体系Ca掺杂样品均严重缺氧(分别对应的缺氧含量δ=7.64,6.99,6.67).X射线衍射(XRD)结果显示,所有样品均为单相,并且晶格常数a,b,c的值随着缺氧含量δ的增加而增大.1T直流磁场下的磁化率-温度曲线及其拟合结果表明,对无Ca掺杂样品Sr14Cu24O41-δ(δ=7.64),氧含量减少导致自旋链上空穴数的减少,自旋链上自由自旋的Cu离子数目增大,而参与二聚化的Cu离子数目略有减小;而对Ca掺杂样品(Sr1-xCax)14Cu24O41-δ,随着Ca含量的增加,样品中氧缺失量降低,但Ca掺杂引起空穴减少的程度更强. 关键词: 自旋梯状结构化合物 氧缺位 晶体结构 磁化率  相似文献   

6.
曲灵丰  侯清玉  赵春旺 《物理学报》2016,65(3):37103-037103
对于Y掺杂ZnO,当摩尔数在0.0313-0.0625之内,Y掺杂量越增加,吸收光谱发生红移和蓝移两种不同实验结果均有文献报道.本文使用Materials Studio软件下的CASTEP模块中密度泛函理论的第一性原理平面波模守恒(Norm conserving)赝势GGA+U的方法,构建了未掺杂纤锌矿ZnO单胞以及Y掺杂ZnO的Zn_(0.9687)Y_(0.0313)O超胞、Zn_(0.9583)Y_(0.0417)O超胞和Zn_(0.9375)Y_(0.0625)O超胞模型.对掺杂前后体系的能带结构、态密度、差分电荷密度、布居值以及吸收光谱进行了计算.计算结果表明:当Y掺杂摩尔数在0.0313-0.0625之内,Y掺杂量越增加,掺杂体系的晶格常数、体积、总能量越增大,掺杂体系越不稳定、形成能越增大、掺杂越难;掺杂体系中平行于和垂直于c轴的Y-O键布居值越减小、离子键越增强、共价键越减弱、键长越变长;掺杂体系的最小光学带隙越变宽、吸收光谱发生蓝移现象越明显.吸收光谱的计算结果与实验结果相符合,合理解释了吸收光谱红移、蓝移的争论.这对制备Y掺杂ZnO短波长光学器件能起到一定的理论指导作用.  相似文献   

7.
许镇潮  侯清玉 《物理学报》2015,64(15):157101-157101
目前, 当Ag掺杂ZnO摩尔数为0.0208-0.0278的范围内, Ag掺杂对ZnO吸收光谱影响的实验研究均有文献报道, 但是, 有两种不同的实验结果, 掺杂体系吸收光谱红移或蓝移两种相悖的报道. 为了解决本问题, 本文采用自旋密度泛函理论(DFT)框架下的广义梯度近似(GGA+U)平面波赝势方法, 构建三种Zn1-xAgxO (x=0, x=0.0278, x=0.0417)模型, 分别对所有模型进行几何结构优化和能量计算. 结果表明, 与纯的ZnO布居值和Zn-O的键长相比, 掺杂体系布居值减小、Ag-O键长增加、共价键减弱、离子键增强. 当Ag掺杂ZnO摩尔数为0.0278-0.0417的范围内, Ag掺杂量越增加、O原子2p轨道、Zn原子的4s, 3d轨道电荷数不变、Ag原子的5s轨道电荷数越增加、Ag原子的4d轨道电荷数越减小、掺杂体系晶格常数越增加、体积越增加、总能量越增加、稳定性越下降、形成能越下降、掺杂越难、掺杂体系的带隙越变窄、吸收光谱红移越显著. 计算结果与实验结果相一致. 并且合理解释了存在的问题. 这对设计和制备Ag掺杂ZnO体系的光催化剂有一定的理论指导作用.  相似文献   

8.
侯清玉  赵春旺 《物理学报》2015,64(24):247201-247201
在实验上, W掺杂量在0.02083–0.04167的范围内时, 有关掺杂体系的电导率影响的研究有两种相悖的结论. 为解决这个问题, 本文采用第一性原理平面波模守恒赝势方法, 首先构建了两种Ti0.97917W0.02083O2 和Ti0.95833W0.04167O2 超胞模型, 分别对这两种模型进行了几何结构优化、能带结构分布和态密度分布计算. 同时还计算了掺杂体系的电子浓度、有效质量、迁移率和电导率. 计算结果表明, 在电子自旋极化或电子非自旋极化的条件下, W掺杂浓度越大、掺杂体系的电子浓度越大、有效质量越小、迁移率越小、电导率越大、导电性能越强. 由电离能和Bohr半径分析进一步证实了Ti0.95833W0.04167O2 超胞的导电性能优于Ti0.97917W0.02083O2 超胞. 为了研究掺杂体系的结构稳定性和形成能, 又分别构建了Ti0.96875W0.03125O2, Ti0.9375W0.0625O2两种超胞模型, 几何结构优化后进行了计算, 结果表明, 在电子自旋极化或电子非自旋极化的条件下, 在W掺杂量为0.02083–0.04167的范围内, W掺杂浓度越大、掺杂体系的总能量越高、稳定性越差、 形成能越大、掺杂越困难. 将掺杂体系的晶格常数与纯的锐钛矿TiO2相比较, 发现沿a轴方向的晶格常数变大、沿c轴方向的晶格常数变小、掺杂体系的体积变大, 计算结果与实验结果相符合. 在电子自旋极化的条件下, 掺杂体系形成了半金属化的室温铁磁性稀磁半导体.  相似文献   

9.
侯清玉  曲灵丰  赵春旺 《物理学报》2016,65(5):57401-057401
与本文相近的Al-2N掺杂量的范围内, 对ZnO掺杂体系吸收光谱分布红移和蓝移两种实验结果均有文献报道, 但是, 迄今为止对吸收光谱分布尚未有合理的理论解释. 为了解决该问题, 本文采用基于密度泛函理论的广义梯度近似 平面波超软赝势方法, 用第一性原理构建了两种不同掺杂量的Zn0.98148Al0.01852O0.96296N0.03704和Zn0.96875Al0.03125O0.9375N0.0625超胞模型. 在几何结构优化的基础上, 对模型能带结构分布、态密度分布和吸收光谱分布进行了计算. 计算结果表明, 在本文限定的掺杂量范围内, Al-2N掺杂量越增加, 掺杂体系的体积越减小, 体系总能量越升高, 体系稳定性越下降, 形成能越升高, 掺杂越难; 所有掺杂体系均转化为简并p型化半导体, 掺杂体系最小光学带隙均变窄,吸收光谱均发生红移; 同时发现掺杂量越增加, 掺杂体系最小光学带隙变窄越减弱, 吸收光谱红移越减弱. 研究表明: 要想实现Al-2N共掺在ZnO中最小光学带隙变窄、掺杂体系发生红移现象, 除了限制掺杂量外, 尺度长短也应限制; 其次, Al-2N掺杂量越增加,掺杂体系空穴的有效质量、浓度、 迁移率、电导率越减小,掺杂体系导电性能越减弱. 计算结果与实验结果的变化趋势相符合. 研究表明, Al-2N共掺在ZnO中获得的新型半导体材料可以用作低温端的温差发电功能材料.  相似文献   

10.
Mo掺杂ZnO的吸收光谱红移和蓝移两种相互冲突的实验结果均有报道,但是仍然没有合理解释.为了解决该问题,本文采用基于密度泛函理论的广义梯度近似平面波超软赝势+U方法,用第一性原理分析了Zn_(0.9583)Mo_(0.0417)O,Zn_(0.9375_Mo_(0.0625_O,Zn_(14)Mo_2O的能带结构、态密度和吸收光谱分布.结果表明,Mo掺杂量为2.08 at%—3.13 at%的范围内,随着掺杂量的增加,体系的体积逐渐增大,形成能逐渐升高,稳定性逐渐下降,掺杂逐渐困难.与此同时,所有掺杂体系均转化为n型简并半导体.与未掺杂ZnO相比,掺杂体系的带隙均变窄,吸收光谱均发生红移,Mo掺杂量越增加,掺杂体系带隙变窄减弱、吸收光谱红移减弱、电子有效质量越减小、电子浓度越减小、电子迁移率越减小、电子电导率越减小.同时,磁矩减小,掺杂体系的居里温度能达到室温以上.  相似文献   

11.
采用基于密度泛函理论的第一性原理平面波超软赝势法,对Ag掺杂AlN 32原子超晶胞体系进行几何结构优化,计算并分析体系的电子结构、磁性和光学性质.结果表明:Ag掺杂后,Ag4d态电子与其近邻的N2p态电子发生杂化,引入杂质带形成受主能级,实现p型掺杂,使体系的导电能力增强,同时表现出金属性和弱磁性,其净磁矩为1.38μв.掺杂形成的N-Ag键电荷集居数较小,表现出强的离子键性质.掺杂后体系的介电函数虚部和光吸收谱在低能区出现新的峰值,同时复折射率函数在低能区发生变化,吸收边向低能方向延展,体系对长波吸收加强,能量损失明显减小.  相似文献   

12.
First-principles computations are performed to investigate phosphorene monolayers doped with 30 metal and nonmetal atoms. The binding energies indicate the stability of all doped configurations. Interestingly, the magnetic atom Co doping induces the absence of the magnetism while the magnetism is realized in phosphorene with substitutional doping of nonmagnetic atoms (O, S, Se, Si, Br, and Cl). The magnetic moment of transition metal (TM)-doped systems is suppressed in the range of 1.0-3.97 μB. The electronic properties of the doped systems are modulated differently; O, S, Se, Ni, and Ti doped systems become spin semiconductors, while V doping makes the system a half metal. These results demonstrate potential applications of functionalized phosphorene with external atoms, in particular to spintronics and dilute magnetic semiconductors.  相似文献   

13.
The local electronic structure and magnetic properties of GaAs doped with 3d transition metal (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) were studied by using discrete variational method (DVM) based on density functional theory. The calculated result indicated that the magnetic moment of transition metal increases first and then decreases, and reaches the maximum value when Mn is doped into GaAs. In the case of Mn concentration of 1.4%, the magnetic moment of Mn is in good agreement with the experimental result. The coupling between impure atoms in the system with two impure atoms was found to have obvious variation. For different transition metal, the coupling between the impure atom and the nearest neighbor As also has different variation. Supported by the National Natural Science Foundation of China (Grant No. 10347010)  相似文献   

14.
雷天民  刘佳佳  张玉明  郭辉  张志勇 《中国物理 B》2013,22(11):117502-117502
Mn-doped graphene is investigated using first-principles calculations based on the density functional theory(DFT).The magnetic moment is calculated for systems of various sizes,and the atomic populations and the density of states(DOS)are analyzed in detail.It is found that Mn doped graphene-based diluted magnetic semiconductors(DMS)have strong ferromagnetic properties,the impurity concentration influences the value of the magnetic moment,and the magnetic moment of the 8×8 supercell is greatest for a single impurity.The graphene containing two Mn atoms together is more stable in the 7×7 supercell.The analysis of the total DOS and partial density of states(PDOS)indicates that the magnetic properties of doped graphene originate from the p–d exchange,and the magnetism is given a simple quantum explanation using the Ruderman–Kittel–Kasuya–Yosida(RKKY)exchange theory.  相似文献   

15.
金掺杂锯齿型石墨烯纳米带的电磁学特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
胡小会  许俊敏  孙立涛 《物理学报》2012,61(4):47106-047106
本文采用基于密度泛函理论的第一性原理计算了金原子填充锯齿型石墨烯纳米带 (ZGNRs)中双空位结构的电磁学特性. 计算结果表明: 边缘位置是金原子的最稳定掺杂位置, 杂质原子的引入导致掺杂边缘的磁性被抑制, 不过掺杂率足够大时, 掺杂边缘的磁性反而恢复了. 金掺杂纳米带的能带结构对掺杂率敏感: 随着掺杂率的增大, 掺杂纳米带分别表现半导体特性、半金属特性以及金属特性. 本文的计算表明金原子掺杂可以调制ZGNR的磁性以及能带特性, 为后续实验起指导作用, 有利于推动石墨烯材料在自旋电子学方面的应用.  相似文献   

16.
Cu对Ni50Mn36In14相变和磁性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
柳祝红  伊比  李歌天  马星桥 《物理学报》2012,61(10):108104-108104
文章研究了Cu替代部分Ni对铁磁性形状记忆合金Ni50Mn36In14相变和磁性的影响规律. 研究表明,在Ni50-xCuxMn36In14中,随着Cu含量的增加,相变温度逐渐降低. Cu含量低于5%时,奥氏体的磁性强于马氏体的磁性, 母相和马氏体相的饱和磁化强度的差值ΔM随着Cu含量的增加而增大. 当Cu含量x=4.5时, ΔM迅速增加到80 emu/g, 并在该材料中观察到了磁场驱动的马氏体到奥氏体的转变,显示了该材料作为磁驱动磁电阻材料的潜在应用前景.当Cu含量高于5%时,奥氏体保持铁磁状态, 马氏体相由反铁磁状态变为铁磁状态,马氏体的磁性强于奥氏体的磁性, ΔM大大削弱,磁场驱动性质消失.  相似文献   

17.
通过基于广义梯度近似的总能密度泛函理论研究不同Mn掺杂浓度的ZnS(001)薄膜的电学和磁学特性. 计算单个Mn原子和两个Mn原子处于各种掺杂位置及不同的磁耦合状态时的能量稳定性.计算了单个Mn原子掺杂和两个Mn原子掺杂的ZnS(001)薄膜的态密度. 不同掺杂组态的p-d杂化的程度不同. 不同掺杂组态,Mn原子所处的晶场环境不同,所以不同掺杂组态的Mn的3d分波态密度峰的劈裂有很大的不同. 掺杂两个Mn原子时,得到三种稳定组态的基态都是反铁磁态. 分析了以上三种能量稳定的组态中,两个Mn原子在不同磁耦合状态下的3d态密度图. 当两原子为铁磁耦合时,由于d-d电子相互作用,使反键态的态密度峰明显加宽. 随着Mn掺杂浓度的增加,Mn原子有相互靠近,并围绕S原子形成団簇的趋势. 对于这样的组态,Mn原子之间为反铁磁耦合能量更低.  相似文献   

18.
侯清玉  贾晓芳  许镇潮  赵春旺 《物理学报》2017,66(11):117401-117401
在掺杂浓度范围为2.78%—6.25%(物质的量分数)时,Ni掺杂ZnO体系吸收光谱分布的实验结果存在争议,目前仍然没有合理的理论解释.为了解决存在的争议,在电子自旋极化状态下,采用密度泛函理论框架下的第一性原理平面波超软赝势方法,构建不同Ni掺杂量的ZnO超胞模型,分别对模型进行几何结构优化和能量计算.结果表明,Ni掺杂量越大,形成能越高,掺杂越难,体系稳定性越低,掺杂体系带隙越窄,吸收光谱红移越显著.采用LDA(局域密度近似)+U方法调整带隙.结果表明,掺杂体系的铁磁性居里温度能够达到室温以上,磁矩来源于p-d态杂化电子交换作用.Ni掺杂量越高,掺杂体系的磁矩越小.另外还发现Ni原子在ZnO中间隙掺杂时,掺杂体系在紫外光和可见光区的吸收光谱发生蓝移现象.  相似文献   

19.
杜成旭  王婷  杜颖妍  贾倩  崔玉亭  胡爱元  熊元强  毋志民 《物理学报》2018,67(18):187101-187101
采用基于密度泛函理论的第一性原理平面波超软赝势法,对纯Li Zn P, Ag/Cr单掺和Ag-Cr共掺Li Zn P新型稀磁半导体进行了结构优化,计算并分析了掺杂体系的电子结构、磁性、形成能、差分电荷密度和光学性质.结果表明:非磁性元素Ag单掺后,材料表现为金属顺磁性;磁性元素Cr单掺后, sp-d杂化使态密度峰出现劈裂,体系变成金属铁磁性;而Ag-Cr共掺后,其性质与Ag和Cr单掺完全不同,变为半金属铁磁性,带隙值略微减小,导电能力增强,同时形成能降低,原子间的相互作用和键强度增强,晶胞的稳定性增强.通过比较光学性质发现,掺杂体系的介电函数虚部和光吸收谱在低能区均出现新的峰值,且当Ag-Cr共掺时介电峰峰值最高,同时复折射率函数在低能区发生明显变化,吸收边向低能方向延展,体系对低频电磁波吸收加强.  相似文献   

20.
本文采用密度泛函理论研究了V原子单掺杂和双掺杂(ZnS)12团簇的几何结构和能量稳定性。我们考虑了三种掺杂方式:替代掺杂,外掺杂和内掺杂。单掺杂时,替代掺杂团簇是最稳定结构,而对于双掺杂,外掺杂团簇是最稳定结构。团簇磁矩主要来自V-3d态的贡献,4s和4p态也贡献了一小部分磁矩。由于轨道杂化,相邻的Zn和S原子上也产生少量自旋。结果显示V原子间的磁性耦合是短程相互作用。相邻V原子之间的磁性耦合由直接的V-V反铁磁耦合和两个V和S原子之间通过p-d杂化产生的铁磁耦合这两中相互作用的竞争来决定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号