首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于TDLAS技术的水汽低温吸收光谱参数测量   总被引:2,自引:0,他引:2       下载免费PDF全文
聂伟  阚瑞峰  许振宇  姚路  夏晖晖  彭于权  张步强  何亚柏 《物理学报》2017,66(20):204204-204204
精确的气体光谱参数对气体浓度、温度等的光谱精确反演测量具有十分重要的意义,针对当前主流光谱数据库(例如HITRAN)中数据与实际数值存在相当误差的问题,自主研制了一套基于静态冷却技术的低温光谱实验平台,用于精确测量低温下的气体吸收光谱参数.运用该低温光谱实验平台,采用可调谐二极管激光吸收光谱(TDLAS)技术测量了温度为230—340 K、压强为10—1000 Pa时7240—7246 cm~(-1)波段的纯水汽振转跃迁光谱.采用Voigt线型多峰拟合方法,获得了5条水汽振转跃迁谱在不同温度、不同压强下的积分吸光度值及洛伦兹展宽值,运用线性拟合的方法得到这5条吸收线的自展宽半峰全宽系数及参考温度下的线强值.运用不确定度传递公式,计算得到实验结果的不确定度,与HITRAN2012数据库中的线参数进行对比,所测的5条吸收线中实验结果与数据库值最大相差10.96%,且实验结果的不确定度为1.11%—2.98%(置信概率p=95%,包含因子k=2),小于HITRAN2012数据库值的不确定度.  相似文献   

2.
采用4.6μm附近的量子级联激光器作为光源,搭建了一套二硫化碳(CS2)吸收光谱测量系统,结合可调谐二极管激光吸收光谱技术,对光谱范围为2178.99—2180.79 cm-1的CS2吸收光谱展开了深入研究,重点测量了2180.5—2180.74 cm~(-1)的四条吸收谱线,利用基于非线性最小二乘的多元线性回归算法对CS2吸收光谱进行拟合,精确得到了该范围内谱线的中心波长、线强以及空气展宽系数等光谱参数.经计算,对应谱线线强不确定度小于5%,空气展宽系数不确定度小于15%,这个结果可作为免标定CS2红外光谱探测的基础光谱参数,对痕量CS2气体传感具有重要意义.未来我们将进一步开展2170—2200 cm-1整个谱段的CS2谱线参数的测量,以期填补其在HITRAN和GEISA数据库光谱参数的空白.  相似文献   

3.
可调谐半导体激光吸收光谱中的吸光度反演算法研究   总被引:1,自引:0,他引:1  
可调谐半导体激光吸收光谱具有高分辨、高灵敏度和快速测量等特点,已经在环境检测、工业过程检测等方面得到广泛应用。在直接吸收光谱技术中,吸光度曲线以及积分吸光度的确定对于气体浓度反演、线强校正等都有重要的作用。对激光直接吸收光谱中吸光度和吸光度积分反演算法进行了研究,采用分段多项式基线拟合方法来消除激光器光强波动的影响,得到吸光度,再用非线性拟合Levenberg-Marquardt算法进行线形拟合来获取积分吸光度。通过水气吸收谱线的检测对算法进行了验证。  相似文献   

4.
Voigt线型两翼拟合非均匀流场吸光度的方法研究   总被引:1,自引:0,他引:1  
在吸收光谱领域特别是可调谐半导体激光直接吸收光谱(dTDLAS)技术中, 需要精确测量吸收光谱的积分吸光度值以精确反演出流场温度、组分浓度等参数。对于非均匀流场,单光路吸收光谱测量时,由于沿测量路径的谱线展宽随流场状态的变化而变化,见诸文献的研究主要采用Voigt或Lorentz线型对吸光度曲线拟合处理或直接对吸光度曲线数值积分获取积分吸光度值,针对方法可能引入的误差进行了模拟分析,并提出Voigt线型两翼拟合吸光度的方法来获取吸收光谱的积分吸光度值,以减小拟合误差。采用流场测量中常用的H2O作为目标气体,选取了8条具有不同低态能级的吸收线,以实验室平焰炉为原型建立两种非均匀流场模型,并通过分段法对流场非均匀性进行等效处理。分别采用Voigt线型拟合法、数值积分法和Voigt线型两翼拟合法模拟计算两模型的积分吸光度值,通过与理论积分吸光度值对比得出各方法的误差大小,从而确定出在不同的非均匀流场情况下相适应的积分吸光度值获取方法。  相似文献   

5.
由于NH3在大气气溶胶化学中具有重要作用,所以快速和精确反演NH3浓度对环境问题非常重要.本文以9.05μm的室温连续量子级联激光器(quantum cascade laser,QCL)作为光源,采用波长扫描直接吸收可调谐二极管激光吸收光谱(tunable diode laser absorption spectroscopy,TDLAS)技术,研究了QCL在1103.4 cm–1的光谱特性,获得了激光器控制的温度电流与波长的关系.设计了QCL二级温控的低压实验平台,测量氨气在1103.4 cm–1处的6条混叠吸收线,在降低压强的情况下谱线展宽变小,使混叠光谱分离,由此计算各条吸收线的线强,进一步对测量不确定度进行分析.针对混叠严重的光谱提出了低压分离单光谱精确反演气体浓度的方法,并进行了实验验证.通过与HITRAN数据库进行结果对比,得出氨气在1103.4 cm–1的实验测量线强值与数据库偏差为2.71%-4.71%,实验测量线强值的不确定度在2.42%-8.92%,极低压条件下反演浓度与实际值的偏差在1%-3%.  相似文献   

6.
基于波长调制光谱(WMS)理论,提出一种利用光谱拟合实现燃烧场气体参数测量的方法;通过拟合谱线的谐波信号实现谱线积分吸光度、多普勒线宽和碰撞线宽的测量,进而实现燃烧场内气体温度、压强和水蒸气浓度的测量;通过数值仿真研究了积分吸光度和碰撞线宽对谐波信号的影响,并在样品池中进行实验研究。结果表明:谐波信号光谱对积分吸光度的灵敏度约为1,而对碰撞线宽的灵敏度则随碰撞线宽增大而先增大后基本不变;光谱拟合测量方法具有较高的测量精度,气体温度、压强、水蒸气物质的量分数的测量值与预测值的最大相对偏差分别小于4%、6%、5.5%。  相似文献   

7.
报导了采用基于室温脉冲量子级联激光器的脉内光谱检测技术,利用中心波长为1904 cm-1的量子级联激光器,在实验室对NO气体样品进行检测的研究结果. 针对单线直接吸收光谱反演算法进行了研究,介绍了基线拟合的最小二乘算法以获取其吸光度,根据HITRAN数据库中相应吸收谱线的吸收线强,采用扫描积分实现了气体浓度的反演,避免了标气标定造成的误差及污染;通过拟合残差分析得到了系统的检测限,达到34×10-6 m. 关键词: 量子级联激光器 中红外 多项式拟合 扫描积分  相似文献   

8.
在碳中和的国际大背景下,精确可靠地定量测量大气温室气体浓度对实现碳中和目标具有重要意义,开发测量结果可直接溯源至国际单位制SI的气体分析仪是精确可靠监测温室气体浓度的重要方法。可调谐二极管激光吸收光谱(TDLAS)技术是常用的气体浓度测量方法,根据比尔-朗伯定律,实现仪器的测量浓度直接溯源至SI的必要条件之一是可直接溯源的气池光程,气池光程的不确定度直接影响气体浓度的测量不确定度,对气池光程的可溯源精确测量有利于发展测量结果可直接溯源的气体分析仪。针对光程标称为81 cm的三次反射型气池光程可溯源测量需求,使用校准的米尺测量该气池光程得到的直接测量结果为(81.21±0.80) cm,较大的测量不确定度(0.80 cm)是综合考虑定位误差和三段光路与测量路径可能不重合导致的测量误差估算得到的。为了减小测量不确定度,本文搭建了TDLAS气池光程测量系统,测量系统以1 576 nm分布式反馈激光器为光源,通过在激光控制器上加载斜坡扫描电压来测量待测气池内标准高纯二氧化碳(CO2,99.999%)在6 344.68 cm-1附近的吸收光谱,使用测量结果可直接溯源的压力传感器和温度传感器分别测量气池内的压强和气体温度,采用美国国家标准技术局最新测量得到的30012-00001跃迁带P 4e支线强(相对标准不确定度为0.15%)反演气池光程,使用二次速度依赖Voigt线型精确拟合不同气压(36~75 Torr)下的光谱吸光度信号获得对应气压的积分吸光度,全面分析各参量的测量不确定度及其传递过程,对不同气压下的积分吸光度进行线性回归分析,计算得到可直接溯源的气池光程为(81.61±0.42) cm,相对标准不确定度为0.51%,测量不确定度范围落在直接测量结果范围内,测量不确定度小于直接测量结果。本文气池的光路结构是多次反射长光程气池的简化,该系统同样适用于多次反射长光程气池光程的可溯源测量。  相似文献   

9.
报导了采用基于室温脉冲量子级联激光器的脉内光谱检测技术,利用中心波长为1904 cm-1的量子级联激光器,在实验室对NO气体样品进行检测的研究结果. 针对单线直接吸收光谱反演算法进行了研究,介绍了基线拟合的最小二乘算法以获取其吸光度,根据HITRAN数据库中相应吸收谱线的吸收线强,采用扫描积分实现了气体浓度的反演,避免了标气标定造成的误差及污染;通过拟合残差分析得到了系统的检测限,达到34×10-6 m.  相似文献   

10.
可调谐半导体激光吸收光谱技术(TDLAS)作为一种痕量气体精确检测的方法,已广泛应用于生活生产之中,该方法可通过积分吸光度与气体浓度的线性关系准确反演待测气体的浓度。环境变化和系统噪声等易造成吸光度曲线发生变形,故需对吸光度曲线进行非线性拟合,将其回归至Voigt模型。设计并搭建了基于TDLAS的CO实时在线监测系统,在此平台基础上,提出了一种三角替代Voigt线型单光谱积分吸光度的快速计算方法,并与高斯-埃尔米特方法进行比较。结果表明:三角替代方法浓度反演精度仅下降0.11%,平均计算耗时缩短84.19%;三角替代Voigt线型拟合方法以极小的精度损失,大幅提高了线型拟合的运算速度。  相似文献   

11.
气体分子吸收谱线的光谱参数是影响吸收光谱测量精度的重要因素,分子光谱数据库中收录的光谱参数大都具有较大的不确定度,用以测量气体温度等参数时会产生较大的测量误差。为了获得可用于燃烧场诊断的H2O谱线的光谱参数,采用时分复用技术,在温度、压强和H2O组分浓度可控的环境中对1.4 μm附近的吸收光谱开展了研究。对7 185.60和7 454.45 cm-1两条H2O谱线的线强度、展宽系数及其温度指数等光谱参数进行测量,实验结果表明,两条谱线的线强度测量值与数据库中的值偏差分别小于2.61%和4.65%,不确定度都小于4%。  相似文献   

12.
王迪  李玉爽  濮御  吕妍  耿金剑  李栋 《应用光学》2020,41(2):348-353
基于激光吸收光谱技术的气体检测手段具有非接触,分辨率高,灵敏度高等优势,然而激光在线检测气体过程易受温度变化导致其浓度测量偏差增大。以氨气为研究对象,探究了温度对氨气吸收谱线线强的影响规律及影响机制,搭建了非常温条件(298 K至323 K)氨气激光检测实验平台,提出了气体吸光度-温度关联式法对浓度反演结果进行修正处理。结果表明:浓度一定时,总配分函数比值rQ是氨气分析吸收线强随温度升高过程中的主导控制因素,总配分函数比值与温度的负相关关系造成氨气光谱吸光度随温度升高而降低;修正前浓度反演值随着温度升高而降低,温度达到323 K时,浓度反演值为3.13%,与标准浓度值相比其误差高达37.4%,经过修正后的浓度反演值与标准浓度值的相对误差在0.2%~1.4%范围内。  相似文献   

13.
王敏锐  蔡廷栋 《物理学报》2015,64(21):213301-213301
本文在采用乘积近似方法计算二氧化碳、一氧化碳分子总的配分函数(其中分子的振动配分函数采用谐振子近似, 转动配分函数采用非刚性转子模型, 并考虑了离心扭曲修正)的基础上, 利用所得配分函数和振动跃迁矩平方的实验值以及Herman-Wallis系数, 计算了1.5 μm 附近二氧化碳30012–00001跃迁带和一氧化碳3–0跃迁带在300–6000 K温度范围内部分温度下的吸收线强; 为验证计算方法和结果的准确性, 在基于可调谐二极管激光吸收光谱技术搭建的高温测量系统中, 对300–800 K温度范围内部分谱线线强进行了测量, 并把计算结果、测量结果及HITRAN数据库中对应数据进行了对比, 发现相对偏差小于3%, 证明了本方法的有效性, 同时计算及测量所得高温线强数据可对HITRAN数据库进行有效的校正和补充.  相似文献   

14.
在CH4吸收光谱测量中,特别是低温吸收光谱测量中,分子吸收谱线的准确性测量十分重要,尤其是将所得的测量参数运用到地球大气以及外星球的遥感探测和模拟。HITRAN数据库中CH4给出的参数并不完整,同时还很不准确。为了对6 038~6 052cm-1波段的CH4低温吸收光谱进行测量,该文采用窄线宽的二极管激光器作为光源,结合自主设计的低温装置,测量了CH4的低能级能量和转动量子数,并与HITRAN 2008进行了对比,同时模拟了线强随温度的变化。  相似文献   

15.
气体的光谱吸收率是Lambert-Beer定律对气体进行定性定量分析的重要依据,光谱吸收率积分值是描述气体吸收特性的一个重要参量。根据所测气体的吸收光谱图,通过从HITRAN数据库中查询得到所需数据,选择其中一条吸收光谱,计算出光谱吸收率在频域上的积分值,然后把积分值代入Lambert-Beer定律便可以求出所测气体的浓度值。计算光谱吸收率的积分值,能够避开复杂的线型函数的计算,不需要通过标准气体进行校准,从而更加简捷、快速地求出气体浓度值。鉴于温度变化会引起相应的压强的变化,同时在压强不随温度变化以及压强随温度共同变化这两种情况下,对光谱吸收率积分值随温度的变化规律进行了研究。总结出在这两种情况下,光谱吸收率在频域上的积分值总是随着温度的增加而增加,当增加到一定温度时,光谱吸收率在频域上的积分值随着温度的增加而减小,最后趋于稳定,但是两种情况下光谱吸收率积分值变化趋势的范围有所不同。最后通过实验验证计算光谱吸收率在频域内的积分值时需要同时考虑温度的变化以及温度导致的相应的压强的变化,此时吸收率积分值相对误差约为1%;只考虑温度的变化而不考虑压强随温度的变化,吸收率积分值的相对误差值大于1%而且逐渐变大。研究温度对光谱吸收率积分值的影响,可以在使用光谱吸收率积分值计算气体浓度时,选择合适的温度范围即更稳定的吸收区,从而减少温度对测量结果带来的误差。  相似文献   

16.
根据HITRAN数据库中分子吸收谱线的积分线强和一些谱线相关参数(中心位置、压力展宽半宽度、温度依赖系数等),研究了应用于FTIR气体监测的HITRAN数据库分子标准吸收截面计算方法,主要包括线强温度修正,谱线展宽,谱线卷积,逐线积分和数值算法.以甲烷为例给出采用矩形(Boxcar)和三角(Triangular)两种截断函数得到的1cm-1分辨率下甲烷分子标准吸收截面数据.  相似文献   

17.
基于双光程气体多通吸收池,提出了一种单吸收池双光程(长光程:72.46 m;短光程:36.23 m)同步测量水分子吸收光谱的测量方法,并结合窄线宽外腔半导体激光器和高精度Fabry-Perot标准具,发展了一套1μm波段的高分辨率水分子吸收光谱双光程同步测量装置.在测量装置建立后,精确测量了Fabry-Perot标准具的自由光谱范围,并详细评估了该系统中Fabry-Perot标准具以及双光程气体多通吸收池内压力和温度的稳定性.利用该装置测量了9152.53 cm~(–1)处水分子在双光程下的吸收光谱,分别反演得到了长光程和短光程下的分子吸收线强和自加宽系数.双光程吸收线强和自加宽系数的平均值与HITRAN2016数据库相应数据的相对偏差分别为0.78%和3.8%,该结果验证了双光程同步测量方法的可行性和测量装置的可靠性.  相似文献   

18.
李宁  吕晓静  翁春生 《物理学报》2018,67(5):57801-057801
针对高压环境吸收谱线加宽以及波分复用技术合波透射信号分析测试难题,提出利用非线性拟合方法对激光吸收光谱测量中激光强度与吸收光谱进行耦合求解.建立激光强度非线性变化与多谱线吸收拟合函数关系,解决了特殊环境下无法获取光谱基线的难题,实现了波分复用过程合波后光谱信号的分离与诊断.通过仿真验证该方法的可行性,分析计算了激光器特性和特征谱线位置等因素对拟合结果的影响.搭建实验台实现了1—10 atm变压力环境下6330—6337 cm~(-1)波段CO_2吸收光谱叠加信号的诊断分析,对气液两相脉冲爆轰过程中7185.6 cm~(-1)与7444.35 cm~(-1)波段波分复用光谱信号进行测试与拟合,无需分光设备实现了耦合光路分离和温度计算,研究结果对激光吸收光谱技术在高压环境以及燃烧环境下波分复用技术的发展具有重要意义.  相似文献   

19.
李晋华  王召巴  王志斌  张敏娟  曹俊卿 《物理学报》2014,63(21):214204-214204
氧气A带是理想的大气要素反演通道,吸收系数是重要的参数之一,它影响到反演结果的精度.结合HITRAN2012数据库和大气温度廓线图,分析氧气A带吸收系数的影响因素,推出各因素与温度的依赖关系,确定吸收系数随温度的变化.结果表明,氧气A带谱线半宽度受温度依赖系数影响较小,而受温度影响较大.线型因子随温度产生了两种变化,在谱线半宽度以外的谱线位置上,随温度的增大,函数值减小,而在中心频率到谱线半宽度的谱线位置上,随温度的升高而增大.谱线线强对温度具有强依赖关系.利用逐线积分算法计算氧气A带吸收系数,同时考虑了谱线半宽度的压力展宽效应和谱线线强及半宽度对温度的依赖关系,得出氧气A带吸收系数对温度的依赖关系主要来源于线强的温赖关系,尤其是中心频率处温度影响较大;而Lorentzian线型函数的温赖关系不明显.利用布鲁克光谱仪在1 cm-1下测量63 m处氧气A带的吸收光谱,与理论模型在同等条件下的透过率比较,误差小于0.83%,验证了温度校正模型的正确性.  相似文献   

20.
苯-甲苯-二甲苯(BTX)是大气挥发性有机物(VOCs)的重要组成成份,人类长期暴露在苯系物的环境中致癌风险将极大提高。利用BTX在紫外波段有明显的光谱吸收特征,选取250~275 nm作为研究波段,该波段可将BTX的主要特征吸收包含在内。设计了一套由标准BTX液体制备标准气态BTX的装置,采用连续紫外光源和差分吸收光谱技术分别对单组分苯与BTX混合气体进行连续监测研究。为最大程度去除外界噪声干扰,分别采用小波变换滤波和多项式平滑滤波法,并对两种方法的去噪效果进行评价。研究表明尽管传统处理吸收光谱噪声的方法常采用多项式平滑滤波,但该方法会使吸收截面上的细节信息或高频分量丢失。而小波变换滤波具有良好的时频局域化特性,能通过伸缩和平移对信号进行多分辨率分析并可聚焦到信号的任意细节,更能保持光谱谱线的特征结构且信噪比优于多项式平滑滤波。通过实验获得了BTX的吸收截面并与HITRAN数据库吸收截面对比,发现若直接采用HITRAN数据库中吸收截面值将造成由于温度与压强变化导致的浓度反演误差。为了能够与实际监测环境相符合,采用实验室获取的吸收截面作为标准吸收截面。对单组分苯浓度的反演分别采用积分面积法和最小二乘法,研究表明两种方法的测量精度均能满足环保监测法规要求,且最小二乘法更加稳定、精度更高。针对BTX混合气体的测量,采用通过浓度值反演差分吸光度的方法进而逐一反演苯-甲苯-二甲苯的浓度值。研究发现对BTX混合物的浓度反演时二甲苯测量误差均在2%以下,但对甲苯和苯的测量误差逐渐增大,苯浓度的反演最大误差达到了9.07%,苯的测量精度受到了二甲苯、甲苯测量精度以及苯光谱特征吸收波段的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号