首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 228 毫秒
1.
FABRICATION AND APPLICATION OF NEAR-FIELD OPTICAL FIBRE PROBE   总被引:1,自引:0,他引:1       下载免费PDF全文
In this paper, the fabrication of a large cone angle near-field optical fibre probe, using the two-step chemical etching method and bent probe, is introduced, and the controlling parameters of the coated Cr-Al film at the probe tip are presented. The scanning electron microscopy images display that the tip diameter of the uncoated large cone angle fibre probe obtained is less than 50nm, the cone angle over 90°, and the diameter of light aperture at the coated probe tip is less than 100nm. The measured results of the optical transmission efficiency for various probe tips show that the uncoated straight optical fibre probe, film-coated straight probe and film-coated bent probe are 3×10-1, 2×10-3, and 1×10-4 times that of the flat fibre probe, respectively. In addition, the force images and near-field optical images of a standard sample are acquired using a large cone angle and film-coated bent probe.  相似文献   

2.
Numerical simulations have been carried out in the framework of waveguide theory to model collection mode scanning near-field optical microscopy (SNOM). The theoretical model includes the optical fiber end and describes the metal coated aperture on the probe tip. The developed formalism goes beyond the existing Bethe-Bouwkamp theories for electromagnetic transmission of subwavelength apertures. The finite coating and optical fiber end are now taken into account. The new features enable us to simulate the near-field probes that are widely used in the collection mode SNOM. The emphases of the numerical analyses have been mainly on the resolution mechanism of the microscopy. Influence on the resolution from important parameters of the probe tips, such as the size of the apertures and the probe-sample distance, is extensively studied. The resolution dependence has been analyzed in the light of the near-field coupling efficiency of the probe tip. An optimum tip size has been found which is balanced between the significant signal transmission and the resolution of the device.  相似文献   

3.
本文结合近场扫描结构和纳米线-微光纤耦合技术,提出了一种基于硫化镉纳米线/锥形微光纤探针结构的被动近场光学扫描成像系统.该系统采用被动式纳米探针,保留了纳米探针对样品表面反射光的强约束优势.其理论收集效率为4.65‰,相比于传统的金属镀膜近场探针收集效率提高了一个数量级,可有效地提高扫描探针对样品形貌信息的检测能力;而后通过硫化镉纳米线与微光纤之间高效的倏逝场耦合,将检测的光强信号传输到远场进行光电探测,最终实现对目标样品形貌的分析成像,其样品宽度测量误差在7.28%以内.该系统不需要外部激发光路,利用显微镜自身光源进行远场照明,被动扫描探针仅作为样品表面反射光的被动收集系统.本文基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像方案,可有效地降低探针的制备难度和目标光场的检测难度,简化扫描成像的结构,为近场光学扫描显微系统之后的发展提供新的思路.  相似文献   

4.
本文结合近场扫描结构和纳米线-微光纤耦合技术,提出了一种基于硫化镉纳米线/锥形微光纤探针结构的被动近场光学扫描成像系统.该系统采用被动式纳米探针,保留了纳米探针对样品表面反射光的强约束优势.其理论收集效率为4.65‰,相比于传统的金属镀膜近场探针收集效率提高了一个数量级,可有效地提高扫描探针对样品形貌信息的检测能力;而后通过硫化镉纳米线与微光纤之间高效的倏逝场耦合,将检测的光强信号传输到远场进行光电探测,最终实现对目标样品形貌的分析成像,其样品宽度测量误差在7.28%以内.该系统不需要外部激发光路,利用显微镜自身光源进行远场照明,被动扫描探针仅作为样品表面反射光的被动收集系统.本文基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像方案,可有效地降低探针的制备难度和目标光场的检测难度,简化扫描成像的结构,为近场光学扫描显微系统之后的发展提供新的思路.  相似文献   

5.
Lewis MK  Wolanin P  Gafni A  Steel DG 《Optics letters》1998,23(14):1111-1113
We present a demonstration of near-field scanning optical microscopy of single molecules based on ultrafast two-photon-induced fluorescence. Measurements were performed by use of 100-fs pulses at 800 nm from a Ti:sapphire laser to excite the two-photon transition in Rhodamine B molecules. Although near-field probes are normally metal coated to achieve superresolution, we used uncoated tips to achieve sufficiently high optical powers to generate acceptable fluorescence emission rates. Images of single molecules demonstrate a resolution of ~175nm(< lambda/4) on a topographically smooth surface, which surpasses the apparent lambda/2 resolution limit for uncoated tips operating in the linear response regime.  相似文献   

6.
A sensor probe with a microstructure, which is used for near-field scanning optical microscopes, plays an important role in the resolution and detection sensitivity of the microscope system. In this study, we devised a system for sharpening optical fibers, by which we could fabricate tapered tips of silica-based optical fibers reproducibly in a desired shape by controlling the solution temperature, etching time, and etching depth when applying chemical etching techniques using hydrofluoric acid. Furthermore, we evaluated the diameter of the core tip of an optical fiber by measuring the near-field pattern and comparing it with the Gaussian beam pattern of a non-edge-etched optical fiber. A strong correlation between the ratio of the 1/e2-value width of the beam profile of the near-field pattern to that of the Gaussian beam and the diameter of the extreme tip of the core became apparent. © 2005 The Optical Society of Japan  相似文献   

7.
Spectroscopic near-field imaging of single silica-shell/Au-core and pure silica nanoparticles deposited on a silicon substrate is performed in the infrared wavelength range (λ = 9–11 μm) using scattering-type scanning near-field optical microscopy (s-SNOM). By tuning the wavelength of the incident light, we have acquired information on the spectral phonon–polariton resonant near-field interactions of the silica-shell/Au-core and pure silica nanoparticles with the probing tip. We made use of the enhanced near-field coupling between the high index Au-core and the probing tip to achieve spectral near-field contrast of the thin silica coating (thickness < 10 nm). Our results show that spectroscopic imaging of thin coating layers and complex core–shell nanoparticles can be directly performed by s-SNOM.  相似文献   

8.
We present a probe concept for scanning near-field optical microscopy combining the excellent background suppression of aperture probes with the superior light confinement of apertureless probes. A triangular aperture at the tip of a tetrahedral waveguide (full taper angle approximately 90 degrees ) shows a strong field enhancement at only one rim when illuminated with light of suitable polarization. Compared to a circular aperture of equivalent size, the resolution capability is doubled without loss of brightness. For a approximately 60 nm sized triangular aperture, we measured an optical resolution <40 nm and a transmission of approximately 10(-4).  相似文献   

9.
An internal reflection mode is introduced for scanning near-field optical microscopy (SNOM) with the tetrahedral tip. A beam of light is coupled into the tip and the light specularly reflected out of the tip is detected as a photosignal for SNOM. An auxiliary STM mode is used to control the distance during the scanning process and to record the topography of the sample simultaneously with the SNOM image. Images were obtained of different metallic samples which show a contrast in the order of 10% of the total reflected photosignal. In images of metallic samples an inverted contrast is consistently obtained compared to images previously obtained of comparable samples in a transmission mode. The contrast shows a pronounced dependence on the polarization of the incident beam with respect to the orientation of the edges of the tip. In the case of gold surfaces, the photosignal as a function of distance between the tip and the surface shows a pronounced peak in the near-field range of 0–20 nm which is tentatively attributed to the excitation of surface plasmons on the gold surface. The pronounced near-field effects and the strong contrast in the near-field images and the resolution well below 50 nm are an indication of a highly efficient coupling of the incident beam to a local excitation of the tip apex which is essential for the function of the tip as a probe for SNOM. Received: 17 May 1999 / Accepted: 18 May 1999 / Published online: 21 October 1999  相似文献   

10.
We discuss theoretically the concept of spatial resolution in near-field scanning optical microscopy (NSOM) in light of a recent work [Opt. Express 17 (2009) 19969] which reported on the achievement of active tips made of a single ultrasmall fluorescent nanodiamond grafted onto the apex of a substrate tip and on their validation in NSOM imaging. Since fluorescent nanodiamonds tend to decrease steadily in size, we assimilate a nanodiamond-based tip to a point-like single photon source and compare its ultimate resolution with that offered by standard metal-coated aperture NSOM tips. We demonstrate both classically and quantum mechanically that NSOM based on a point-like tip has a resolving power that is only limited by the scan height over the imaged system whereas the aperture-tip resolution depends critically on both the scan height and aperture diameter. This is a consequence of the complex distribution of the electromagnetic field around the aperture that tends to artificially duplicate the imaged objects. We show that the point-like tip does not suffer from this “squint” and that it rapidly approaches its ultimate resolution in the near-field as soon as its scan height falls below the distance between the two nano-objects to be resolved.  相似文献   

11.
We review our recent developments of near-field scanning optical microscopy (NSOM) that uses an active tip made of a single fluorescent nanodiamond (ND) grafted onto the apex of a substrate fiber tip. The ND hosting a limited number of nitrogen-vacancy (NV) color centers, such a tip is a scanning quantum source of light. The method for preparing the ND-based tips and their basic properties are summarized. Then we discuss theoretically the concept of spatial resolution that is achievable in this special NSOM configuration and find it to be only limited by the scan height over the imaged system, in contrast with the standard aperture-tip NSOM whose resolution depends critically on both the scan height and aperture diameter. Finally, we describe a scheme we have introduced recently for high-resolution imaging of nanoplasmonic structures with ND-based tips that is capable of approaching the ultimate resolution anticipated by theory.  相似文献   

12.
Chen  Jinghan  Katayama  Ryuichi  Sugiura  Satoshi 《Optical Review》2022,29(2):127-139

Heat-assisted magnetic recording is a technology to improve recording density for hard disks. The authors’ group has proposed a device, in which a gold nano-antenna as a near-field transducer is attached to a semiconductor ring resonator as an integrated light source. Localized surface plasmon resonance at the tip of nano-antenna excites near-field light to form small recorded marks to increase recording density. In this study, to improve the device performance, the dependence of spot size and energy density of near-field light on tip curvature, length, and bottom diameter of nano-antenna was investigated through a numerical simulation. Cylinder type and cone type nano-antennas were considered. For both types, as the tip curvature of nano-antenna increased, the spot size decreased and the energy density increased. It was possible to reduce the spot size to 18 × 18 nm2. For cylinder type, there was an optimal length of nano-antenna where the energy density became maximum, and the optimal length changed depending on the presence or absence of recording medium. This was because of the difference in plasmon resonance condition. Moreover, for cone type, there was an optimal bottom diameter of nano-antenna where the energy density became maximum, and the optimal bottom diameter changed depending on the length of nano-antenna.

  相似文献   

13.
H.W. Kihm  D.S. Kim 《Optics Communications》2009,282(12):2442-15731
In this paper, we theoretically and experimentally demonstrate that metal coated apertured probes are efficient near-field probes on surfaces with high reflectivity for the scattering as well as for the collection mode near-field scanning optical microscopy (NSOM). We show that a blunt apertured metal coated tip is very effective in suppressing image dipoles which affect strongly the signals scattered from frequently used sharp metal tips or gold nanoparticle attached probes. By using a simultaneous collection and scattering mode (dual mode) NSOM we measure the near-field images of surface plasmon polariton (SPP) launched from a slit. The collection mode measures propagating SPP along lateral distance in a long scan range with high signal-to-noise ratio, and the scattering mode measures the polarization resolved near-field of SPP. Comparisons of the measured data obtained in the dual mode enable to easily characterize SPP and to separate the measured near-field into the propagating SPP and the directly transmitted light.  相似文献   

14.
We report on near-field scanning optical microscopy measurements on randomly textured ZnO thin films. These films are commonly used as transparent conducting oxide in thin-film solar cells. Textured interfaces are used to increase the scattering of light, which leads to a better light trapping in the solar cell. Here, both the topography and the local transmission are measured with a tapered fiber tip with very high spatial resolution. By varying the distance of the tip and the wavelength of the incident light, the optical profile is visualized and reveals a strong confinement of light on a subwavelength scale which corresponds to ridges in the surface structure. The confinement of light results from guided optical modes in the ZnO which are accompanied by a modulated evanescent field in air. No corresponding structure to this modulation is found in the topography. These results give new insight for further improvement of light trapping in solar cells.  相似文献   

15.
一种高透过率光纤探针的制作   总被引:7,自引:5,他引:2  
本文介绍了一种用于近场扫描光学显微镜(NSOM)中的高透过率光纤探针的制作方法。采用缓冲氢氟酸腐蚀低掺杂的普通单模石英光纤,选取适当比例的腐蚀液,可以得到直径、圆锥角均十分理想的针尖。这种方法不需要高掺杂的特殊光纤或是采用先熔拉后腐蚀的复合工艺。针尖经过镀膜后经测量为针尖直径100nm、透过率5.5×10-4.  相似文献   

16.
We use the tapping illumination and synchronous detection in a scanning near-field optical microscopy to obtain a near-field optical signal that is separated from the far-field signal. The illumination light was irradiated from the bent fiber tip vibrating normal to the sample surface. The transmitted light synchronized with the tapping vibration was observed. The obtained image of an organic film shows that this technique is effective for the weak contrast samples.This paper was originally presented at the 5th International Conference on NEAR FIELD OPTICS and RELATED TECHNOLOGIES (NFO-5), which was held on December 6–10, 1998 at Coganoi Bay Hotel, Shirahama, Japan, in cooperation with the Japan Society of Applied Physics and Mombusho Grant-in Aid for Scientific Research on Priority Areas “Near-field Nano-optics” Project, sponsored by Japan Society for the Promotion of Science.  相似文献   

17.
Strong electric-field enhancements at the apex of a tungsten tip illuminated by an external light source were recently predicted theoretically. We present an experimental study of the dependence of this effect on the polarization angle of the incident light. It is shown that the intensity of the light scattered by the tungsten tip of an apertureless scanning near-field optical microscope is 2 orders of magnitude higher when the incident light is p polarized than when it is s polarized. This experimental result is in good agreement with theoretical predictions and provides an easy way to test the quality of the tips.  相似文献   

18.
High resolution optical microscopy has many interesting applications in solid state physics, low temperature physics, biology and semiconductor technology. Unfortunately, the lateral resolution of conventional microscopes is limited by the Rayleigh-limit. “Scanning nearfield optical microscopy” (SNOM) seems to be a promising new approach to characterize the properties of materials optically with a high lateral resolution of 50–100 nm. The most important part of such a microscope is the scanning probe (a special glass fiber tip). However, the quality of the optical fiber tip is of decisive importance. Since the production process of pulled and coated glass fiber tips is still highly empirical and error-prone, a technique would be useful to determine the tips’ quality before they are shipped to the user or mounted in the microscope. The tips’ apertures are smaller than λ/2 and therefore they cannot be measured in a non-destructive way by conventional optical microscopy. This paper discusses an easy and fast method for the optical characterization of common glass fiber SNOM tips. The effective aperture of the tip is measured from the far-field distribution of the emitted intensity recorded by a CCD target. A numerical model is introduced to solve this inverse task and a simple optical setup is presented to detect light emitted by the tip at an angle of up to 90° from the optical axis. Experimental investigation, near/far-field calculations and scanning electron microscope investigations show the working principle of this measurement technique for the analysis and evaluation of a typical nanostructured object.  相似文献   

19.
Both tip‐enhanced Raman spectroscopy and scanning tunneling microscopy require the use of sharp tips. Electrochemical etching appears to be the most widely used method for preparing tips. To address the over‐etching problem associated with the silver tips by either using voltage or current as a feedback, we developed here an optical method‐based machine vision to achieve a quick cutoff of the circuit once the tip forms. It is a fully automated method with a response time of about 40 ms and is tolerated with any existing electrochemical etching method. We can significantly decrease the time of over‐etching of the silver tip when short rectangular pulses with a duty cycle of 28.6% were used. The mean radius of curvature was ca. 58 nm, as measured from over 50 tips. The capacities of silver tips for high‐resolution scanning tunneling microscopy imaging and high‐sensitivity tip‐enhanced Raman studies have been demonstrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
高效、高分辨光纤微探针的制备及检验   总被引:12,自引:0,他引:12  
刘秀梅  王佳  李达成 《光学学报》2000,20(5):59-665
提出两种同时满足高分辨、高传光效率的探针模型以及制备方法 :先用自制热拉装置将光纤拉制成过渡区为双曲线或抛物线形的探针 ,然后用 4 0 %氢氟酸进行快速腐蚀 ,使探针孔径变小而保持过渡区域形状和锥度基本不变。所获探针孔径变化范围为 2 0~ 2 0 0 nm,锥度 2 0°~ 6 0°。为检验探针性能 ,将两种探针的出射光分布与用传统热拉法所得到探针进行对比 ;探测了光子扫描隧道显微镜状态下的倏逝波衰减曲线 ;给出了用集光式扫描近场光学显微镜得到的近场光学图像 ;同时 ,验证了探针对剪切力控制的适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号