首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Surface modification of silica nanoparticles synthesized by the sol–gel process was performed using coupling agents, 3-(trimethoxysilyl) propyl methacrylate (MSMA) and/or trimethyethoxylsilane (TMES). The chemical structures of the formed particles were analyzed by means of Fourier Transform Infrared Spectroscopy (FTIR) and solid-state Si-Nuclear Magnetic Resonance (Si-NMR), and the particle sizes were determined by Transmission Electron Microscopy (TEM) imaging. The latter results indicate that such surface modifications can effectively lessen the serious aggregation being common to pure silica nanoparticles. In some cases, separate particles of ca. 5–10 nm dia. could be obtained, when both MSMA and TMES were employed during the modification process. Dynamic light scattering method was adopted to examine the stability of the prepared silica sols during a long-term storage. It was found that the aggregation phenomenon can essentially be eliminated in case that the surface of silica contained sufficient amount of TMES moiety. Vacuum distillation was used to remove the volatile components such as methanol, ethanol, and water from the silica sol. The condensed product, containing 2 wt% residual solvent, appeared as a uniform transparent paste-like material, which can be dispersed in common organic solvents and monomers within a few seconds.  相似文献   

2.
This article describes a method for silica coating of Co–Pt alloy nanoparticles prepared in the presence of poly(vinylpyrrolidone) (PVP) as a stabilizer. The Co–Pt nanoparticles were prepared in an aqueous solution at 25–80 °C from CoCl2 (3.0 × 10−4 M), H2PtCl6 (3.0 × 10−4 M), PVP (0–10 g/L), and NaBH4 (4.8 × 10−3–2.4 × 10−2 M). The silica coating was performed for the Co–Pt nanoparticle colloid containing the PVP ([Co] = [Pt] = 3.0 × 10−5 M) at 25 °C in (1/4) (v/v) water/ethanol solution with tetraethoxyorthosilicate (TEOS) (7.2 × 10−5–7.2 × 10−3 M) and ammonia (0.1–1.0 M). Silica particles, which had an average size of 43 nm and contained multiple cores of Co–Pt nanoparticles with a size of ca. 8 nm, were produced at 1.4 × 10−3 M TEOS and 0.5 M ammonia after the preparation of Co–Pt nanoparticles at 80 °C, 5 g/L PVP, and 2.4 × 10−2 M NaBH4. Their core particles were fcc Co–Pt alloy crystallites. Their saturation magnetization was 2.0-emu/g sample, and their coercive field was 12 Oe.  相似文献   

3.
对石墨烯/铜体系开展了系统性的近场光学实验研究,成功观测到了区别于铜衬底的、来自石墨烯的近场光学响应信号,发现在表面台阶几何参数相同的铜衬底上的不同石墨烯样品表现出了截然不同的近场光学响应.  相似文献   

4.
The size dependency of the cohesive energy of nanocrystals is obtained in terms of their averaged structural and energetic properties, which are in direct proportion with their cohesive energies. The significance of the effect of the geometrical shape of nanoparticles on their thermal stability has been discussed. The model has been found to have good prediction for the case of Cu and Al nanoparticles, with sizes in the ranges of 1–22 nm and 2–22 nm, respectively. Defining a new parameter, named as the surface-to-volume energy-contribution ratio, the relative thermal stabilities of different nanoclusters and their different surface-crystalline faces are discussed and compared to the molecular dynamic (MD) simulation results of copper nanoclusters. Finally, based on the size dependency of the cohesive energy, a formula for the size-dependent diffusion coefficient has been presented which includes the structural and energetic effects. Using this formula, the faster-than-expected interdiffusion/alloying of Au(core)–Ag(shell) nanoparticles with the core–shell structure, the Au-core diameter of 20 nm and the Ag-shell thickness of 2.91 nm, has been discussed and the calculated diffusion coefficient has been found to be consistent with its corresponding experimental value.  相似文献   

5.
Scattering-type scanning near-field optical microscopy (s-SNOM) has been playing more and more important roles in investigating electromagnetic properties of various materials and structures on the nanoscale. In this technique, a sharp tip is employed as the near-field antenna to measure the sample's properties with a high spatial resolution. As the scattered near-field signal from the tip is extremely weak and contaminated by strong background noise, the effective detection, and subsequent extraction of the near-field information from the detected signals is the key issue for s-SNOM. In this review, we give a systematic explanation of the underlying mechanisms of s-SNOM, and summarize and interpret major signal detection techniques involved, including experimental setups, theories for signal analysis and processing, and exposition of advantages and disadvantages of such techniques. By this, we hope to provide a practical guide and a go-to source of detailed information for those interested in and/or working on s-SNOM.  相似文献   

6.
Because highly luminescent lanthanide compounds are limited to Eu3+ and Tb3+ compounds with red (Eu, ~615 nm) and green (Tb, ~545 nm) emission colors, the development and application of time-resolved luminescence bioassay technique using lanthanide-based multicolor luminescent biolabels have rarely been investigated. In this work, a series of lanthanide complexes covalently bound silica nanoparticles with an excitation maximum wavelength at 335 nm and red, orange, yellow and green emission colors has been prepared by co-binding different molar ratios of luminescent Eu3+–Tb3+ complexes with a ligand N,N,N1,N1-(4′-phenyl-2,2′:6′,2′′-terpyridine-6,6′′-diyl)bis(methylenenitrilo) tetrakis (acetic acid) inside the silica nanoparticles. The nanoparticles characterized by transmission electron microscopy and luminescence spectroscopy methods were used for streptavidin labeling, and time-resolved fluoroimmunoassay (TR-FIA) of human prostate-specific antigen (PSA) as well as time-resolved luminescence imaging detection of an environmental pathogen, Giardia lamblia. The results demonstrated the utility of the new multicolor luminescent lanthanide nanoparticles for time-resolved luminescence bioassays.  相似文献   

7.
Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2–5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.  相似文献   

8.
Homogenous Ag–Au alloy nanoparticles having an average size of 12 ± 2 nm were successfully prepared by the exploding wire technique comprising of a wire–plate system and using 12 V batteries. The X-ray photoelectron spectroscopy data reveal the formation of alloy nanoparticles with Ag80-Au20 composition, which agrees with the absorption data, obtained using UV-Visible spectroscopy. XPS also reveals a thin metal-oxide shell on the metallic alloy core. These alloy nanoparticles show visible fluorescence emission that was compared with the observed fluorescence from pure Ag nanoparticles. A mechanism for the observed fluorescence is also provided.  相似文献   

9.
We investigate the dependence of the size parameter in the Mie scattering theory on the near-field enhanced Raman scattering properties for high dielectric constant ZnO nanorods grown randomly by PLD (pulsed laser deposition). High Raman signals of Rhodamine 6G (R6G) at 532 nm excitation wavelength were observed with nanorods of 400 nm average diameter. This experimental result was explained theoretically by the size parameter described in the Mie scattering theory, not by surface plasmon polaritons. This was also confirmed by the near-field distribution calculated by the FDTD (Finite-Difference Time Domain) method. The ZnO nanorods with 400 nm average diameter can detect as low as 1 μM of R6G. This near-field enhancement factor is equivalent to that with 10-nm-thick gold-coated ZnO nanorods (nanoshells) with an average core diameter of 100 nm. Controlling the diameter of bare ZnO nanorods is effective for obtaining large enhancement factors without an additional process of gold thin film coating on them.  相似文献   

10.
This article presents a process for surface coating and functionalization of luminescent silicon nanoparticles. The particles were coated with silica using a microemulsion process that was adapted to the fragile silicon nanoparticles. The as-produced core–shell particles have a mean diameter of 35 nm and exhibit the intrinsic photoluminescence of the silicon core. The silica layer protects the core from aqueous oxidation for several days, thus allowing the use of the nanoparticles for biological applications. The nanoparticles were further coated with amines and functionalized with polyethylene glycol chains and the toxicity of the particles has been evaluated at the different stages of the process. The core–shell nanoparticles exhibit no acute toxicity towards lung cells, which is promising for further development.  相似文献   

11.
An approximate resonance wavelength equation that varies with metal antenna structure size is developed to design a bowtie gold metal antenna working at near-infrared (IR) wavelength. Bowtie antenna structures with resonance wavelength of 1.06 μm, 1.55 μm and 10.6 μm are designed based on this equation. A finite-difference time domain (FDTD) algorithm with total field scattered field (TFSF) source simulation shows the resonance wavelength of the designed structures being precisely in agreement with the expected wavelengths from the equation. Planar integration of the metal bowtie antennas is discussed as well. Gold nanohole bowtie antenna arrays are fabricated and the near-field optical transmission properties of the nanohole array are investigated with a near-field scanning optical microscope (NSOM). Our experimental results verify the near-field optical transmission performance and further demonstrate that they are in agreement with the theoretical calculation results. The high enhancement efficiency and integration of the metal bowtie antennas open the possibility of a wide application in IR optoelectronics detection and imaging.  相似文献   

12.
We present the results of studies of the nonlinear optical properties of Pd, Ru, and Au nanoparticles. We studied the nonlinear refraction and nonlinear absorption of suspensions of these nanoparticles at 1064-nm wavelength. A relatively strong nonlinear absorption of the Pd nanoparticles was observed in the case of 1064-nm, 50-ps pulses (β=2×10−9 m W−1). The Ru and Pd nanoparticles showed weak negative nonlinear refraction (γ∼−(6–8)×10−16 m2 W−1) in this spectral range. In the case of the Au nanoparticles, a saturated absorption at 532 nm dominated over other nonlinear optical processes.  相似文献   

13.
Core–shell nanoparticles coated with carbon have been synthesized in a single chamber using a continuous and entirely low-pressure plasma-based process. Nanoparticles are formed in an argon plasma using iron pentacarbonyl Fe(CO)5 as a precursor. These particles are trapped in a pure argon plasma by shutting off the precursor and then coated with carbon by passing acetylene along with argon as the main background gas. Characterization of the particles was carried out using TEM for morphology, XPS for elemental composition and PPMS for magnetic properties. Iron nanoparticles obtained were a mixture of FeO and Fe3O4. TEM analysis shows an average size of 7–14 nm for uncoated particles and 15–24 nm for coated particles. The effect of the carbon coating on magnetic properties of the nanoparticles is studied in detail.  相似文献   

14.
A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe3O4) coated with fluorescent silica (SiO2) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe3O4, the formation of SiO2 coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core–shell structure. The magnetic core of the core–shell nanoparticles is 60 ± 10 nm in diameter. The thickness of the fluorescent SiO2 shell is estimated at 15 ± 5 nm. In addition, the fluorescent signal of the SiO2 shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength (λem) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe3O4@SiO2 NPs) were studied. The hysteresis loop of the core–shell NPs measured at room temperature shows that the saturation magnetization (M s) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H c) and remanent magnetization (M r) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core–shell particles have the superparamagnetic properties. The measured blocking temperature (T B) of the TRITC-dextran loaded Fe3O4@SiO2 NPs is about 122.5 K. It is expected that the multifunctional core–shell nanoparticles can be used in bio-imaging.  相似文献   

15.
A eutectic AuGe target immersed in distilled water was ablated by pulsed ultraviolet laser light. The structure of the ablated material was investigated by high-resolution transmission electron microscopy (HRTEM). The images show formation of nanowire structures of AuGe up to 100 nm in length, with widths of 5–10 nm. These nanostructures have Ge content significantly lower than the target material. Electron diffraction demonstrates that they crystallize in the α-AuGe structure. For comparison, laser ablation of pure Au and pure Ge targets was also performed under the same conditions. HRTEM shows that Ge forms spherical nanoparticles with a characteristic size of ~30 nm. Au forms spherical nanoparticles with diameters of ~10 nm. Similar to AuGe, it also forms chainlike structures with substantially lower aspect ratio.  相似文献   

16.
We present a system for molecular spectroscopy using a broadband mid-infrared laser with near-infrared detection. Difference frequency generation of a Yb:fiber femtosecond laser produced a mid-infrared (MIR) source tunable from 2100–3700 cm−1 (2.7–4.7 μm) with average power up to 40 mW. The MIR spectrum was upconverted to near-infrared wavelengths for broadband detection using a two-dimensional dispersion imaging technique. Absorption measurements were performed over bandwidths of 240 cm−1 (7.2 THz) with 0.048 cm−1 (1.4 GHz) resolution, and absolute frequency scale uncertainty was better than 0.005 cm−1 (150 MHz). The minimum detectable absorption coefficient per spectral element was determined to be 4.4×10−7 cm−1 from measurements in low pressure CH4, leading to a projected detection limit of 2 parts-per-billion of methane in pure nitrogen. In a natural atmospheric sample, the methane detection limit was found to be 30 parts-per-billion. The spectral range, resolution, and frequency accuracy of this system show promise for determination of trace concentrations in gas mixtures containing both narrow and broad overlapping spectral features, and we demonstrate this in measurements of air and solvent samples.  相似文献   

17.
In the present study, high-yield W18O49@TiO2 core–shell nanoparticles were prepared by modified plasma arc gas condensation without any catalysts or substrates. All the as-prepared samples were characterized by FEG-SEM, XRD, FEG-STEM, and HAADF analytic techniques. The results of the structural analysis show that the as-prepared nanoparticles presenting a core–shell morphology with an average diameter of 43.5 ± 8.0 nm were composed of non-stoichiometric tungsten oxide (W18O49 phase) as the core (20–40 nm) and rutile-phase TiO2 as the shell with non-uniform thickness (10–20 nm). For the optical properties of the as-prepared W18O49@TiO2 core–shell nanoparticles, Raman spectroscopy and photoluminescence (PL) spectra were used. Compared with pure TiO2 and W18O49 nanocrystals, the experimental results reveal that the defects in the lattice between the core and shell layers induced the board and shifted peaks in Raman spectra. Also, W18O49@TiO2 core–shell nanoparticles exhibited green emission at 483 nm wavelength observed in PL spectrum. Thermal gravimetric analyzer (TGA) results indicate that the TiO2 shell served a stable layer and prevented further oxidation from the atmosphere of the W18O49 core, thereby improving the thermal stability of W18O49 nanoparticles.  相似文献   

18.
Indium tin oxide (ITO) thin films prepared by the sol–gel method have been deposited by the dip-coating process on silica substrates. CO2 laser is used for annealing treatments. The electrical resistivity of sol–gel-derived ITO thin films decreased following crystallization after exposure to CO2 laser beam. The topological and electrical properties of the irradiated surfaces have been demonstrated to be strongly related to the coating solution and to the laser processing parameters. Optimal results have been obtained for 5 dip-coating layers film from 0.4 mol/l solution irradiated by 0.6 W/m2 laser power density. In this case, homogeneous and optically transparent traces were obtained with a measured sheet resistance of 1.46×102 Ω/□.  相似文献   

19.
A wet chemical deposition method for preparing transparent conductive thin films on the base of Al-doped ZnO (AZO) nanoparticles has been demonstrated. AZO nanoparticles with a size of 7 nm have been synthesised by a simple precipitation method in refluxed conditions in ethanol using zinc acetate and Al-isopropylate. The presence of Al in ZnO was revealed by the EDX elemental analysis (1.8 at.%) and UV–Vis spectroscopy (a blue shift due to Burstein–Moss effect). The obtained colloid solution with the AZO nanoparticles was used for preparing by spin-coating thin films on glass substrates. The film demonstrated excellent homogeneity and transparency (T > 90%) in the visible spectrum after heating at 400 °C. Its resistivity turned to be excessively high (ρ = 2.6 Ω cm) that we ascribe to a poor charge percolation due to a high film porosity revealed by SEM observations. To improve the percolation via reducing the porosity, a sol–gel solution was deposited “layer-by-layer” in alternation with layers derived from the AZO colloid followed by heating. As it was shown by optical spectroscopy measurements, the density of thus prepared film was increased more than twice leading to a significant decrease in resistivity to 1.3 × 10−2 Ω cm.  相似文献   

20.
Obtaining small (<50 nm), monodispersed, well-separated, single iron oxide core–silica (SiO2) shell nanoparticles for biomedical applications is still a challenge. Preferably, they are synthesised by inverse microemulsion method. However, substantial amount of aggregated and multicore core–shell nanoparticles is the undesired outcome of the method. In this study, we report on the production of less than 50 nm overall size, monodispersed, free of necking, single core iron oxide–SiO2 shell nanoparticles with tuneable shell thickness by a carefully optimized inverse microemulsion method. The high degree of control over the process is achieved by understanding the mechanism of core–shell nanoparticles formation. By varying the reaction time and precursor concentration, the thickness of silica layer on the core nanoparticles can be finely adjusted from 5 to 13 nm. Residual reactions during the workup were inhibited by a combination of pH control with shock freezing and ultracentrifuging. These high-quality tuneable core–shell nanocomposite particles exhibit superparamagnetic character and sufficiently high magnetization with great potential for biomedical applications (e.g. MRI, cell separation and magnetically driven drug delivery systems) either as-prepared or by additional surface modification for improved biocompatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号