首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Digital particle imaging velocimetry (DPIV) is a powerful measurement technique, which can be used as an alternative or complementary approach to laser doppler velocimetry (LDV) in a wide range of research applications. The instantaneous planar velocity measurements obtained with PIV make it an attractive technique for use in the study of the complex flow fields encountered in turbomachinery. The planar nature of the technique also significantly reduces the facility run time over point-based techniques. Techniques for optical access, light sheet delivery, CCD camera technology and particulate seeding are discussed. Results from the successful application of the PIV technique to both the blade passage region of a transonic axial compressor and the diffuser region of a high speed centrifugal compressor are presented. Both instantaneous and time-averaged flow fields were obtained. The averaged flow field measurements are used to estimate the flow turbulence intensity. The instantaneous velocity vector maps obtained during compressor surge provide previously unobtainable insight into the complex flow field characteristics occurring during short lived surge events. These flow field maps illustrate the true power of the DPIV technique.  相似文献   

2.
J. H. Kang  S. J. Lee 《显形杂志》2009,12(4):375-382
The ventilation flow in a heating, ventilation and air conditioning (HVAC) module of a passenger car was investigated experimentally. Three different ventilation modes with varying temperature mode were tested to study the effect of ventilation mode on the velocity field inside the HVAC module. For each mode, more than 450 instantaneous velocity fields were measured using a particle image velocimetry (PIV) velocity field measurement technique. The instantaneous velocity fields were ensemble averaged to obtain the spatial distribution of mean velocity and spanwise vorticity. The present work highlights the usefulness of the PIV technique for the analysis of the flow inside an HVAC module. The experimental results can be used not only to understand and improve the ventilation flow of an HVAC module but also to validate numerical predictions.  相似文献   

3.
The flow field around a Darrieus rotor in dynamic stall is studied by flow visualization and PIV measurements. The visualization is carried out by dye injection technique while the phase averaged velocity distributions around the blade are measured by PIV combined with a conditional imaging technique. The results indicate the appearance of dynamic stall phenomenon due to the shedding of two pairs of vortices from the blade during one rotation of the rotor. These stall vortices are produced by the separation of flow over the inner surface of the blade and the formation of roll-up vortices from the outer surface. The second stall vortices develop along the blade and strongly interact with the flow field near the blade, affecting the aerodynamic performance of the rotor.  相似文献   

4.
The measurement of spatially resolved velocity distributions is crucial for modelling flow and for understanding properties of materials produced in extrusion processes. Traditional methods for flow visualization such as particle image velocimetry (PIV) rely on optically transparent media and cannot be applied to turbid polymer melts. Here we present optical coherence tomography as an imaging technique for PIV data processing that allows for measuring a sequence of time resolved images even in turbid media. Time-resolved OCT images of a glass-fibre polymer compound were acquired during an extrusion process in a slit die. The images are post-processed by ensemble cross-correlation to calculate spatially resolved velocity vector fields. The results compared well with velocity data obtained by Doppler-OCT. Overall, this new technique (OCT-PIV) represents an important extension of PIV to turbid materials by the use of OCT.  相似文献   

5.
何霖  易仕和  田立丰  陈植  朱杨柱 《中国物理 B》2013,22(2):24704-024704
A novel technique for simultaneous measurements of instantaneous whole-field density and velocity fields of supersonic flows has been developed.The density measurement is performed based on the nano-tracer planar laser scattering(NPLS) technique,while the velocity measurement is carried out using particle image velocimetry(PIV).The present experimental technique has been applied to a flat-plate turbulent boundary layer at Mach 3,and the measurement accuracy of the density and velocity are discussed.Based on this new technique,the Reynolds stress distributions were also obtained,demonstrating that this is an effective means for measuring Reynolds stresses under compressible conditions.  相似文献   

6.
利用激光成像速度仪(PIV)测量了旋转离心叶轮内部的非定常流场,获得了旋转离心叶轮内部相对速度的非定常流场分布。详细分析了叶轮内部非定常流动现象和流动规律。通过实验研究发现旋转离心叶轮内部的流动是非定常,在叶轮出口处,叶片的吸力面与轮盖的夹角区存在一个低速区,并观察到了明显的射流/尾迹结构。射流区和尾流区的大小和范围在沿盘盖方向和跨叶片方向上是不同的。射流区和尾流区之间不存在明显的分界线。  相似文献   

7.
气液两相流速度及粒径分布激光干涉测量方法的研究   总被引:1,自引:0,他引:1  
为了实现对气液两相流的粒子粒径、空间分布及其速度测量。对激光干涉气液两相流测量技术(ILIDS)进行了深入研究,该技术是一种应州于气液两相流测量的新技术,其主要优点是不干扰流场和颗粒粒径、位置测量精度高。基于该技术所开发的图像自动处理方法可以利用普通粒子成像测量技术系统拍摄气液两相流的激光散射干涉图像。并利用图像卷积定位、傅里叶变换频率分析及其图像互相关测速等图像处理手段从干涉图像中自动提取粒子的位置、直径和速度信息。为了验证该方法的测量精度,对喷嘴生成的气水两相流进行了测量实验,得到了喷嘴出口处不同区域的粒径、速度矢量的空间分布,并将测得的速度矢量与用粒子成像测量技术方法测得的结果进行对比,证明两种方法测量的平均速度差别仅为0.38%。  相似文献   

8.
本文应用粒子图象测速技术(PIV)对内燃机压缩过程中的缸内流场进行了实验研究。开发的实验装置可真实模拟内燃机的进气、压缩和膨胀行程,并且适于开设大窗口以测取大区域的全场速度分布。开发建立的PIV拍摄及数据处理系统实现了对瞬态全场流动参数的较精确的测量处理,可直观地给出流场中的涡流特征。文中有部分结果实例。  相似文献   

9.
离心叶轮内三维湍流流场的实验研究   总被引:6,自引:0,他引:6  
利用多普勒激光测速仪对闭式后弯离心叶轮内三维湍流流场进行了实验研究。叶轮在带有无叶扩压器的通风机内运行。对整个流道内各流面的测点进行了详细的数据采集和统计.由得到的测量结果,分析了叶轮内回转面、径向面上主流速度的分布及发展趋势,气流角由叶轮进口向出口、由压力侧向吸力侧的变化规律、以及叶轮出口处二次旋涡流动等流动特性。  相似文献   

10.
 等离子体激励器电极组相位不同便产生多相等离子体气动激励,建立了粒子图像测速仪流场参数测试系统,利用粒子图像测速仪技术,研究了非对称布局等离子体气动激励诱导空气流动特性,分析了多相等离子体气动激励对诱导空气流动速度的影响。结果表明:粒子图像测速仪流场测试系统能够准确地反映等离子体气动激励诱导空气流动的流场空间结构,等离子体气动激励诱导空气流动是平行于激励器的近壁面射流,多相等离子体气动激励能够增大等离子体气动激励诱导气流速度,或者使等离子体气动激励影响流场区域增大。粒子图像测速仪系统是深入研究等离子体气动激励的流场结构最佳的方式之一。  相似文献   

11.
Velocity and density field measurements by digital speckle method   总被引:1,自引:0,他引:1  
Velocity and density field measurements based on image processing of laser speckle or pseudo-speckle pattern have been developed. Laser speckle velocimetry (LSV) or white-light speckle velocimetry (WSV), which corresponds to a high-image-density PIV, gives a local velocity vector map or whole field velocity contour map of a two-dimensional flow field seeded densely with fine particles. This technique has an advantage in high-speed flow measurement without limit of frame rate except for directional ambiguity. New techniques of laser speckle photography and laser speckle interferometry by means of digital image processing have been developed recently for density field measurements. In laser speckle photography, a local density gradient vector map is reconstructed by cross-correlation evaluation between the reference and the object speckle patterns. In laser speckle interferometry, an equi-density contour map is reconstructed by image subtraction between the reference and the object interferometric speckle patterns.  相似文献   

12.

Abstract  

Systems with closed side branches are liable to an excitation of sound known as cavity tone. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been ascertained by phase-averaged pressure measurements in previous research, while the relation between sound propagation and the flow field is still unclear due to the difficulty of detecting the instantaneous velocity field. It is possible to detect the two-dimensional instantaneous velocity field using high time-resolved particle image velocimetry (PIV). In this study, flow-induced acoustic resonance in a piping system containing closed side branches was investigated experimentally. A high time-resolved PIV technique was used to measure the gas flow in a cavity. Airflow containing oil mist as tracer particles was measured using a high-frequency pulse laser and a high-speed camera. The present investigation on the coaxial closed side branches is the first rudimentary study to visualize the fluid flow two-dimensionally in a cross-section using high time-resolved PIV, and to measure the pressure at the downstream side opening of the cavity by microphone. The fluid flows at different points in the cavity interact, with some phase differences between them, and the relation between the fluid flows was clarified.  相似文献   

13.
The X‐ray PIV (particle image velocimetry) technique has been used as a non‐invasive measurement modality to investigate the haemodynamic features of blood flow. However, the extraction of two‐dimensional velocity field data from the three‐dimensional volumetric information contained in X‐ray images is technically unclear. In this study, a new two‐dimensional velocity field extraction technique is proposed to overcome technological limitations. To resolve the problem of finding a correction coefficient, the velocity field information obtained by X‐ray PIV and micro‐PIV techniques for disturbed flow in a concentric stenosis with 50% severity was quantitatively compared. Micro‐PIV experiments were conducted for single‐plane and summation images, which provide similar positional information of particles as X‐ray images. The correction coefficient was obtained by establishing the relationship between velocity data obtained from summation images (VS) and centre‐plane images (VC). The velocity differences between VS and VC along the vertical and horizontal directions were quantitatively analysed as a function of the geometric angle of the test model for applying the present two‐dimensional velocity field extraction technique to a conduit of arbitrary geometry. Finally, the two‐dimensional velocity field information at arbitrary positions could be successfully extracted from X‐ray images by using the correction coefficient and several velocity parameters derived from VS.  相似文献   

14.
PIV measurement of velocity field in a spray combustor   总被引:2,自引:0,他引:2  
This paper reports a velocity measurement technique using PIV for application to a luminous flame in a spray combustor. The present system consists of a standard PIV system, a rotary shutter and a band-pass filter, the combination of which removes the influence of the high intensity of the luminous flame. The effectiveness of the rotary shutter is studied by changing the shutter speed from 2 ms to 37 ms. The simultaneous observation of the velocity field and the flame structure was carried out in the combustor model for a boiler. The measured velocity field indicates that the exit velocity from the burner is increased by chemical reactions, but the flow pattern inside the combustor is kept similar to that without combustion.  相似文献   

15.
Comparison between numerical simulation and experimental results for unsteady flow field in a radial diffuser pump is presented for the design operating point. The numerical result is obtained by solving three-dimensional, unsteady Reynolds-averaged Navier-Stokes equations by the commercial CFD code CFX-10 withk-ω based shear stress transport turbulence model. Two-dimensional PIV measurements are conducted to acquire the experiment result. The phase-averaged velocity and turbulent kinetic energy fields are compared in detail between the results by the two methods in the impeller, diffuser and return channel regions. The qualitative comparison between CFD and PIV results is quite good in the phase-averaged velocity field. Although the turbulence level by PIV is higher than that by CFD generally, the main turbulence features are nearly the same. Furthermore, the blade orientation effect and other associated unsteady phenomena are also examined, in order to enhance the understanding on impeller-diffuser interaction in a radial diffuser pump.  相似文献   

16.
Two-dimensional velocity distributions outside a Mach 2.0 supersonic nozzle have been investigated using a digital particle im age velocimetry (PIV). Mean velocities , vor ticity field and volume dilatation field were obtained from PIV images using 0 .33 μm titanium dioxide (TiO2) particle. The seeding particle of larger size , 1.4 μrn Ti02, was also used for the experimental comparison of velocity lag downstream of shock waves. The results have been compared and analyzed with schlieren photographs for the locations of shock waves and over-expanded shock structure to inspect possibilities and limits of a PIV technique to over-expanded supersonic flows. It is found that although the quantitative velocity measurement using PIV on over-expanded supersonic flows with large velocity and pressure gradients is limited, the locations of normal shock and oblique shock waves can be resolved by the axial/radial velocity fields, and over-expanded shock structure can be predicted by vorticity field and volume dilatation field which are acquired from the spatial differential of the velocity field.  相似文献   

17.
基于时间分辨的粒子图像测速技术(time-resolved particle image velocimetry, TR-PIV)是一种广泛应用的非接触式二维瞬时流场可视化测量技术。为了得到流场精细的瞬态空间结构和演变过程,提出了一种利用多光谱成像技术来提高流场测量的时间分辨率的方法。利用多个不同波长的脉冲激光照明流场中的同一测量区域,使用多光谱成像系统采集不同波长的粒子图像,经过图像分离,判决计算产生速度矢量场。为了验证这一原理的可行性,使用三种不同波长(488,532和632.8 nm)的单色光谱脉冲搭建了一套基于多光谱成像的TR-PIV系统,通过多波长激光脉冲之间时序的精确控制,将两帧图像之间的时间间隔从10 ms缩短至3.4 ms,时间分辨率提高了3倍。结果表明基于多光谱的TR-PIV测量系统在保持PIV技术瞬时全场测量特点的同时,时间分辨率大为提高。  相似文献   

18.
This paper reports on an experimental investigation of large-scale flowfield instabilities in a pump rotor and the process of noise generation by these instabilities. Measurements of the fluctuating components of velocity and surface pressure were made with hot-wire probes and surface mounted pressure transducers on a seven bladed back swept centrifugal water pump impeller operating with air as the working fluid. The impeller was operated without a volute or scroll diffuser, thereby eliminating any sound generation from pressure fluctuations on the volute cutoff. Thus the study focused on flow field and noise components other than the blade passage frequency (and its harmonics). The primary goal of the study was to provide fundamental information on the unsteady flow processes, particularly those associated with the noise generation in the device. It was further anticipated that detailed flow measurements would be useful for the validation of future computational simulations.The measured data at the discharge show a jet-wake type of flow pattern which results in a strong vorticity field. The flow with high velocity found on the pressure side of the impeller tends to move to the low-pressure region present at the suction side of the passage as a form of roll-up around the blade trailing edge. This motion causes an unsteady flow separation at the suction side of the blade and consequently disturbs the flow in the adjacent passage. By interacting with the impeller blades near the trailing edges, this instability flow causes a periodic pressure fluctuation on the blade surface and generates noise by a trailing edge generation mechanism. The spectrum of surface pressure measured at the trailing edge of each blade reveals a cluster of peaks which were identified with azimuthal mode numbers. The correlation between the acoustic farfield pressure and the surface pressure on the impeller blade has proven that the azimuthal modes synchronized with the number of impeller blades generate noise much more efficiently than the other modes. The paper also clarifies the correlation between unsteady flowfield measurements, in both impeller and laboratory co-ordinates, with the radiated noise properties. Thus some light is shed on the noise generation mechanisms of this particular device.  相似文献   

19.
The purpose of this study is to understand the aerodynamic noise source distribution around a rotating fan blade by measuring the noise signal and velocity field around the blade. The local noise-level distribution over the fan blade is measured by microphone arrays, and the flow field is visualized by smoke and phase-averaged PIV measurement. The noise source distribution is examined by cross-correlation analysis between noise signal and velocity fluctuation. It is found that the noise source is located near the rotating fan blade, especially around leading and trailing edges. The separation and reattachment of flow are observed near the leading edge, and the tip vortices and vortex shedding are found near the trailing edge. The cross-correlation distribution of the noise signal and the radial velocity fluctuation shows large magnitude in the correlated regions, which indicates the noise generation by the formation of vortex structure around the blade.  相似文献   

20.
The flow field around a rotationally oscillating circular cylinder in a uniform flow is studied by using a particle image velocimetry to understand the mechanism of drag reduction and the corresponding suppression of vortex shedding in the cylinder wake at low Reynolds number. Experiments are conducted on the flow around the circular cylinder under rotational oscillation at forcing Strouhal number 1, rotational amplitude 2 and Reynolds number 2,000. It is found from the flow measurement by PIV that the width of the wake is narrowed and the velocity fluctuations are reduced by the rotational oscillation of the cylinder, which results in the drag reduction rate of 30%. The mechanism of drag reduction is studied by phase-averaged PIV measurement, which indicates the formation of periodic small-scale vortices from both sides of the cylinder. It is found from the cross-correlation measurement between the velocity fluctuations that the large-scale structure of vortex shedding is almost removed in the cylinder wake, when the small-scale vortices are generated at the unstable frequency of shear layer by the influence of rotational oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号