首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
LEED studies of xenon monolayers at 77K on (111), (100) and (110) faces of copper and (111), (110) and (211) faces of silver show that the xenon atoms are hexagonally close-packed (or nearly so) on each surface, and that the surface area per adatom is about 17Å2. The adsorbate layer is epitaxially related to the substrate but is in full registry only on Cu (111). Surface potential values are consistent with those already reported for annealed polycrystalline films of copper and silver indicating that the latter are not specifically related to surface roughness.  相似文献   

2.
The ultraviolet photoelectron spectra of xenon adsorbed on crystals of (100) nickel and (110) iron have been measured as a function of xenon coverage. It is shown that the total current in the xenon peaks is a measure of the xenon coverage but that the attenuation of the electrons from the metal substrate is dependent on the packing density of xenon on the surface. Previous measurements by Auger electron spectroscopy are compared and it is shown that the mean free path of 16 eV electrons from the d-bands of nickel and iron is 2.75 times that of 60 eV Auger electrons. The data allows the calculation according to a slab model of a mean thickness of a xenon monolayer. This is interpreted as a measure of the packing density of xenon localized on metal lattices of varying dimensions. The UPS spectrum for xenon on (110) iron shows a marked broadening of the xenon peaks as compared to (100) nickel. This is interpreted as due to variation in relaxation energy over adsorbate states on the iron surface arising from xenon atoms in offsite positions.  相似文献   

3.
Photoelectron spectroscopy was used to determine the elemental composition of thin films formed on 70:30 cupronickel exposed to sodium chloride solutions at different impressed electrochemical potentials. At anodic potentials below the passivation potential, ?0.350 V versus SCE under the experimental conditions, either no film or a film containing copper and nickel in the same ratio as the alloy existed on the alloy. At the passivation potential the spectrum of the passive film indicated primarily nickel oxide and was very similar to the spectrum obtained from a pure nickel specimen passivated in the same environment.  相似文献   

4.
Anomalous surface roughness scaling, where both the local and the large-scale roughness show a power-law dependence on the film thickness, has been widely observed. Here we show that the value of the local roughness exponent in the early stages of Cu electrodeposition depends on the deposition potential. However, initial anomalous scaling can lead to two qualitatively different types of behavior for large film thickness (t>/ or =4 microm). For Cu films electrodeposited with forced convection at high potential and current density, the anomalous scaling is transient: the local roughness saturates for the thickest films studied. When Cu films are electrodeposited at similar potential and current density but with reduced convection, no saturation of the local roughness is observed. Instead the film forms overhangs such that the surface height becomes a multivalued function of the lateral position.  相似文献   

5.
Excimer-laser crystallization (ELC) is the most commonly employed technology for fabricating low-temperature polycrystalline silicon (LTPS). Investigations on the surface roughness of polycrystalline silicon (poly-Si) thin films have become an important issue because the surface roughness of poly-Si thin films is widely believed to be related to its electrical characteristics. In this study, we develop a simple optical measurement system for rapid surface roughness measurements of poly-Si thin films fabricated by frontside ELC and backside ELC. We find that the incident angle of 20° is a good candidate for measuring the surface roughness of poly-Si thin films. The surface roughness of polycrystalline silicon thin films can be determined rapidly from the reflected peak power density measured by the optical system developed using the prediction equation. The maximum measurement error rate of the optical measurement system developed is less than 9.71%. The savings in measurement time of the surface roughness of poly-Si thin films is up to 83%. The method of backside ELC is suggested for batch production of low-temperature polycrystalline silicon thin-film transistors due to the lower surface roughness of poly-Si films and higher laser-beam utilization efficiency.  相似文献   

6.
After immersion in a 0.1 M NaCl solution for 1 h at various controlled potentials, the surface films formed on two commercial stainless steels, 18–12 and 29-4-2, have been studied using a surface analysis technique ESCA (Electron Spectroscopy for Chemical Analysis) combined with ion etching. The influence of controlled potential in the lower region, between the OCP and the critical pitting potential, on the structure and chemical composition of the passive film is in limited agreement with the prior work. At higher controlled potentials above the pitting potential, the surface films consist of two components: the passive film and corrosion products. Changes to both oxidized chromium and metallic iron form major differences in the depth profiles in comparison with the previous results with the passive film. At higher controlled potentials oxidized alloying elements tend to the higher oxidation states on the outermost part of surface together with a possibility of enhanced adsorption of chloride ions. There is a great amount of oxidized molybdenum and chloride ions mainly from the corrosion products on the surface at higher applied potential. Their contents increase with the controlled potential.  相似文献   

7.
表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)技术是一种基于探测吸附于金属基底表面分子振动光谱的快速无损检测方法,目前广泛应用于表面吸附、电化学催化、传感器、生物医学检测和痕量的检测与分析等领域。本实验采用直流磁控溅射技术在BK7玻璃基底上沉积一层厚度为50 nm的金属铜薄膜,在Ar离子轰击作用下获得不同表面粗糙度的金属铜薄膜样品,从而制备具有不同表面增强拉曼光谱活性的金属基底。实验样品分别通过X射线衍射仪(XRD)、原子力显微镜(AFM)、分光光度计、拉曼光谱仪表征其结构、表面形貌及光学性质。测试结果表明铜膜在Ar离子束轰击前后,样品X射线衍射谱的峰值强度没有发生变化,说明其晶相结构未发生改变;随着离子束能量的增加,薄膜表面粗糙度改变,光学散射强度随着表面粗糙度的增加而增强;离子束薄膜表面改性后,以罗丹明B(Rh B)为探针分子,表征薄膜样品表面增强拉曼的活性,通过对比不同样品表面Rh B的拉曼光谱,发现其光谱强度随金属铜薄膜样品表面粗糙度的增加而增强。  相似文献   

8.
In this paper, we report on the surface roughness evolution of highly ordered anodic aluminum oxide (AAO) films based on an atomic force microscopy (AFM) study. Root mean square of the surface roughness was measured on AFM images taken from highly ordered AAO films produced by two-step anodization under different conditions including electrolyte type, anodization voltage, and anodization time. Surface roughness of highly ordered AAO films increases step by step through the two-step anodizing process including electropolishing, first-step anodization, dissolution, and second-step anodization. However, increase of the surface roughness is proportional to the anodization voltage and time. The surface roughness of AAO films changes as a function of length scale until it finally approaches a maximum termed the saturation roughness. The variation of roughness of the growth of AAO could be scaled with an anomalous dynamic behavior as it saturates over a critical length scale while the saturation roughness is dependent on the anodizing time and voltage.  相似文献   

9.
Adsorbed xenon on evaporated films of nickel and platinum has been analysed by Auger electron spectroscopy. The primary electron beam is shown to cause some surface heating resulting in a displacement of the isotherms. This temperature effect is the same for both metals and is due to the limiting thermal conductivity of the glass substrate. A further effect, the electron induced desorption (EID) of xenon is evidenced by a distortion of the isotherms at low equilibrium gas pressures. This effect is more clearly observed on platinum because the coverage is higher than on nickel. The EID cross-section for xenon on both metals is found to be 1 × 10?17cm2. The attenuation of the metal Auger peaks by the xenon overlayer is found to be less for platinum than for nickel. This difference is attributed to a lower packing density of xenon on the platinum surface.  相似文献   

10.
The influence of imperfections of single crystal surfaces on two-dimensional phase transitions is studied by LEED and AES. On a smooth, well-ordered (100)Cu or NaCl face, the first adsorbed layer of xenon undergoes a 2D gas-incommensurable solid first order transition. This transition broadens and becomes continuous on the disordered (100)Cu, the stepped (610)Cu and the disordered (610)NaCl surfaces. The corresponding small variation (±3%) of the chemical potential along the surface can be explained by a defect induced variation of adsorption energy on the substrate for the Cu surfaces or by a limitation of the size of 2D crystals by surface imperfections for the (610)NaCl substrate. Heterogeneities do not modify the lateral structure of 2D solid xenon which remains hexagonal close-packed, but they reduce the size of 2D crystallites in the case of the disordered (610)NaCl substrate. Other spectacular effects are observed on the (610)Cu surface having periodic monoatomic steps: (i) There is a 45° rotation of the 2D crystal with respect to its position on the smooth (100)Cu surface. Hence, the orientational ordering of the xenon overlayer changes drastically, (ii) The LEED pattern at T = 84 K is interpreted as due to a pseudo hexagonal close-packed xenon overlayer with a (2 × 6) coincidence mesh, orientated along the step direction. Moreover, the step edge roughness and the xenon atom size induce a static transverse distortion wave whose wavelength varies with temperature.  相似文献   

11.
In this work, we have reported the effect of In doping on structural, optical and surface properties of copper oxide films obtained by a low-cost ultrasonic spray pyrolysis technique. Thicknesses, refractive indices and extinction coefficients of the films have been determined by Spectroscopic ellipsometry technique using Cauchy-Urbach model for fitting. A very good agreement was found between experimental and theoretical parameters with low MSE values. Transmission and reflectance spectra have been taken by UV Spectrophotometer, and band gap values have been determined by optical method. Structural properties of the films were investigated with X-ray diffraction patterns. In doping caused the films to growth through some certain directions. Atomic force microscope images have been taken to see the effect of In doping on surface topography and roughness of copper oxide films. Surface properties of undoped films have been improved by In doping. Lowest roughness values have been obtained for In doping at 1%. As a result, we have concluded that properties of copper oxide films which are commonly used in solar cells may have improved by In doping (especially In doped at 1%).  相似文献   

12.
Electroless deposition of copper on as-grown and amino-modification diamond substrates was investigated. The compact and uniform copper films were successfully electrolessly deposited on as-grown and amino-modification diamond substrates after activation by Pd/Sn colloid nanoparticles. The adhesion interaction between copper films and diamond substrates was roughly estimated by the ultrasonic treatment. The results showed the higher adhesion interaction between copper films and amino-modification diamond substrates than that between the copper films and as-grown diamond substrates due to the greater attractive force between the Pd/Sn colloid nanoparticles and amino-modified diamond surface. The favorable copper micropatterns were successfully constructed on diamond film surfaces by means of the catalyst lift-off method and the copper lift-off method. Furthermore, the electrochemical behavior of copper-modified boron-doped diamond (BDD) was studied for glucose oxidation in 0.2 M sodium hydroxide solution by using cyclic voltammetry, and the result indicated that copper-modified BDD exhibited high catalytic activity to electrochemical oxidation of glucose in alkaline media.  相似文献   

13.
Thin films of molybdenum oxide were deposited in vacuum by pulsed laser ablation using a xenon fluoride (351 nm) and a krypton fluoride (248 nm) excimer lasers. The films were deposited on unheated substrates and were post-annealed in air in the temperature range 300–500°C. The structural, morphological, chemical, and optical properties of the films were studied. As-deposited films were found to be dark. The transparency of the films was improved with annealing in air. The films were polycrystalline with diffraction peaks that belong to the orthorhombic phase of MoO3. The surface morphology of the films showed a layered structure. Both the grain size and surface roughness increased with annealing temperature. The stoichiometry of the films improved upon annealing in air, with the best stoichiometry of MoO2.95 obtained for films deposited by the XeF laser and annealed at 400°C. Similarly, the best transparency, with a transmittance exceeding 80%, was obtained with the films annealed in the temperature range 400–450°C.  相似文献   

14.
The intensity of surface enhanced Raman scattering from benzoic acid derivatives on mildly roughened, thermally evaporated Ag films shows a remarkably strong dependence on metal grain size. Large grained (slowly deposited) films give a superior response, by up to a factor of 10, to small grained (quickly deposited) films, with films of intermediate grain size yielding intermediate results. The optical field amplification underlying the enhancement mechanism is due to the excitation of surface plasmon polaritons (SPPs). Since surface roughness characteristics, as determined by STM, remain relatively constant as a function of deposition rate, it is argued that the contrast in Raman scattering is due to differences in elastic grain boundary scattering of SPPs (leading to different degrees of internal SPP damping), rather than differences in the interaction of SPPs with surface inhomogeneities.  相似文献   

15.
本文对在过渡金属铁、镍电极表面制备得到的γ-氨丙基三甲氧基硅烷(γ-APS)膜进行了研究。实验中对硅烷膜用X-射线光电子能谱(XPS)、现场表面增强拉曼散射光谱(SERS)和原子力显微镜(AFM)进行了表征。X-射线光电子能谱(XPS)的结果发现存在两个N1s峰,表明γ-APS膜中的氨基有两种存在方式:自由氨基和质子化氨基。实验中还发现现场表面增强拉曼散射光谱(SERS)是研究金属/γ-APS体系中界面层结构非常有效的手段,SERS结果表明硅醇羟基和氨基发生了竞争吸附,且γ-APS分子在外加电位等条件的影响下吸附状态会发生一定变化。原子力显微镜(AFM)的表征结果在微观上显示电极表面的γ-APS膜上形成了一种较规则的微孔结构,这种结构可能与基底的性质有关。  相似文献   

16.
潘永强  杨琛 《应用光学》2018,39(3):400-404
为了探究二氧化钛(TiO2)薄膜表面粗糙度的影响因素, 利用离子束辅助沉积电子束热蒸发技术对不同基底粗糙度以及相同基底粗糙度的K9玻璃完成二氧化钛(TiO2)光学薄膜的沉积。采用TalySurf CCI非接触式表面轮廓仪分别对镀制前基底表面粗糙度和镀制后薄膜表面粗糙度进行测量。实验表明, TiO2薄膜表面粗糙度随着基底表面的增大而增大, 但始终小于基底表面粗糙度, 说明TiO2薄膜具有平滑基地表面粗糙的作用; 随着沉积速率的增大, 薄膜表面粗糙度先降低后趋于平缓; 对于粗糙度为2 nm的基底, 离子束能量大小的改变影响不大, 薄膜表面粗糙度均在1.5 nm左右; 随着膜层厚度的增大, 薄膜表面粗糙度先下降后升高。  相似文献   

17.
The effect of substrate roughness on growth of ultra thin diamond-like carbon (DLC) films has been studied. The ultra thin DLC films have been deposited on silicon substrates with initial surface roughness of 0.15, 0.46 and 1.08 nm using a filted cathodic vacuum arc (FCVA) system. The films were characterized by Raman spectroscope, transmission electron microscope (TEM) and atomic force microscopy (AFM) to investigate the evolution of the surface roughness as a function of the film thickness. The experimental results show that the evolution of the surface morphology in an atomic scale depends on the initial surface morphology of the silicon substrate. For smooth silicon substrate (initial surface roughness of 0.15 nm), the surface roughness decreased with DLC thickness. However, for silicon substrate with initial surface roughness of 0.46 and 1.08 nm, the film surface roughness decreased first and then increased to a maximum and subsequently decreased again. The preferred growth of the valley and the island growth of DLC were employed to interpret the influence of substrate morphology on the evolution of DLC film roughness.  相似文献   

18.
Ion-beam mixing by 500-keV xenon ions has been studied in targets consisting of 2000-Å films of aluminium on a polycrystalline aluminium substrate, onto which has been evaporated a 500-Å overlayer of copper. Both long- and short-range-mixing processes have been identified, by RBS analysis of the irradiated targets, as a deep copper tail in the aluminium and interfacial broadening, respectively. The long-range component varies linearly with xenon fluence, is temperature-independent in the interval 40–500 K, and is not influenced by the presence of an interfacial oxide layer between the copper and aluminium layers. The number of long-range-mixed atoms is in agreement with theoretical estimates of the recoil mixing. The short-range mixing, which is the dominating process, has a squareroot dependence on xenon fluence and is independent of temperature between 40 and 300 K, increasing rapidly at higher temperatures. The broadening attributed to the short-range mixing is explained by interstitial diffusion within the cascade. For small xenon fluences, interfacial oxide layers inhibited both short-range mixing and thermal diffusion. Higher xenon fiuences subdued the inhibition.  相似文献   

19.
银薄膜对光学基底表面粗糙度及光散射的影响   总被引:1,自引:1,他引:0  
潘永强  吴振森  杭凌侠 《光子学报》2009,38(5):1197-1201
为了研究金属银薄膜与光学基底表面粗糙度和光散射的关系,提出了通过对光学薄膜矢量散射公式积分来获得界面粗糙度完全相关模型和完全非相关模型下其表面的总反射散射的方法.理论计算了光学基底上两种模型在不同厚度银膜下的总反射散射和双向反射分布函数.结果表明,当沉积在光学基底上的银薄膜的厚度大于80 nm后,两种模型下计算的银薄膜的表面总反射散射都等于基底的总积分散射,银薄膜能较好地复现出基底的粗糙度轮廓.实验研究表明为了复现基底的粗糙度,银薄膜的最佳厚度应在80~160 nm之间.  相似文献   

20.
《Composite Interfaces》2013,20(3):235-245
Adhesion between glass/epoxy composite substrate and copper foil was evaluated by 90° peeling test. Effect of fracture behavior and the peel strength on copper foil style was experimentally investigated using copper foils with various surface roughness. As mechanical anchoring effect increases with increased surface roughness, the surface roughness increased the surface roughness of copper foil strongly affected the peeling strength and local load variation during the test. The fracture behavior was characterized by secondary electron image and reflective electron image techniques of scanning electron microscopy (SEM). All of the specimens were found to fracture at the anchor points formed in the resin layer on the surface of the substrate. The experimental results were correlated to a formulation based on the theory of beams on elastic foundation, which is presented for predicting the adhesive strength in the adherend- adhesive system. In order to apply this formulation to a no adhesive system, such as FR-4/copper foil, an analytical model was proposed. In this model, a mixture phase of the copper with the surface resin in the substrate was regarded as the adhesive. The calculated results were in relatively good agreement with the experimental results. It was confirmed that the analysis model and evaluation method is useful to predict the peel strength due to the mechanical anchoring effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号