首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨吉军  徐可为 《物理学报》2007,56(10):6023-6027
用磁控溅射方法在单晶Si衬底上沉积膜厚为15—250nm的Ta膜.基于原子力显微镜获得的薄膜表面形貌,用动力学标度理论量化表征薄膜表面动态演化行为.结果表明:当膜厚d<50nm时,薄膜生长指数β≈0.17,而d>50nm后β≈0.45;随着d增加,粗糙度指数α由0.24逐渐增加到0.69,且在d>50nm后趋于稳定.Ta膜的表面动态演化行为揭示了其由小岛聚合结构向连续膜演化的生长过程.与自阴影等非局域效应引起的非稳定行为不同的是,当d<50nm时,薄膜表面动态演化的非稳定行为来源于生长初期的小岛聚合,表面小岛沿膜面切向的生长优于沿法向的生长.随着d继续增加,薄膜以连续膜形式生长,表面动态演化趋于稳定.  相似文献   

2.
Diamond-like carbon (DLC) films were prepared on silicon substrates by liquid phase electrodeposition from a mixture of acetonitrile and deionized water. The deposition voltage was clearly reduced owing to the presence of deionized water in the electrolyte by changing the basic properties (dielectric constant and dipole moment) of the electrolyte. Raman spectra reveal that the ratio of sp3/sp2 in the DLC films is related to the concentration of acetonitrile. The surface roughness and grain morphology determined by atomic force microscopy are also influenced by the concentration of the acetonitrile. The UMT-2 universal micro-tribometer was used to test the friction properties of the DLC films obtained from electrolytes with different concentration. The results convey that the DLC film prepared from the electrolyte containing 10 vol.% acetonitrile has the better surface morphology and friction behavior comparing with the other. In addition the growth mechanism of the film was also discussed.  相似文献   

3.
Samarium fluoride (SmF3) films have been deposited on quartz, silicon and germanium substrates by vacuum evaporation method. The crystal structure of the films deposited on silicon substrate is examined by X-ray diffraction (XRD). The films deposited at 100 °C, 150 °C and 250 °C have the (1 1 1) preferred growth orientation, but the film deposited at 200 °C has (3 6 0) growth orientation. The surface morphology evolution of the films with different thickness is investigated with optical microscopy. It is shown that the microcrack density and orientation of thin film is different from that of thick film. The transmission spectrum of SmF3 films is measured from 200 nm to 20 μm. It is found that this material has good transparency from deep violet to far infrared. The optical constants of SmF3 films from 200 nm to 12 μm are calculated by fitting the transmission spectrum of the films using Lorentz oscillator model.  相似文献   

4.
Ni-Mn-Ga thin films have been fabricated by using magnetron sputtering technique under various substrate negative bias voltages. The effect of substrate negative bias voltage on the compositions and surface morphology of Ni-Mn-Ga thin films was systematically investigated by energy dispersive X-ray spectrum and atomic force microscopy, respectively. The results show that the Ni contents of the thin films increase with the increase of the substrate negative bias voltages, whereas the Mn contents and Ga contents decrease with the increase of substrate negative bias voltages. It was also found that the surface roughness and average particle size of the thin films remarkably decrease with the increase of substrate negative bias voltages. Based on the influence of bias voltages on film compositions, a Ni56Mn27Ga17 thin film was obtained at the substrate negative bias voltage of 30 V. Further investigations indicate that the martensitic transformation start temperature of this film is up to 584 K, much higher than room temperature, and the film has a non-modulated tetragonal martensitic structure at room temperature. Transmission electron microscopy observations reveal that microstructure of the thin film exhibits an internally (1 1 1) type twinned substructure. The fabrication of Ni56Mn27Ga17 high-temperature shape memory alloy thin film will contribute to the successful development of microactuators.  相似文献   

5.
Cu film and Ti/Cu film on polyimide substrate were prepared by ion implantation and ion beam assisted deposition (IBAD) techniques. Three-dimension white-light interfering profilometer was used to measure thickness of each film. The thickness of the Cu film and Ti/Cu film ranged between 490 nm and 640 nm. The depth profile, surface morphology, roughness, adhesion, nanohardness, and modulus of the Cu and Ti/Cu films were measured by scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindenter, respectively. The polyimide substrates irradiated with argon ions were analyzed by scanning electron microscopy (SEM) and AFM. The results suggested that both the Cu film and Ti/Cu film were of good adhesion with polyimide substrate, and ion beam techniques were suitable to prepare thin metal film on polyimide.  相似文献   

6.
For electrolytic capacitor application of the single-phase Ti alloys containing supersaturated silicon, which form anodic oxide films with superior dielectric properties, porous Ti-7 at% Si columnar films, as well as Ti columnar films, have been prepared by oblique angle magnetron sputtering on to aluminum substrate with a concave cell structure to enhance the surface area and hence capacitance. The deposited films of both Ti and Ti-7 at% Si have isolated columnar morphology with each column revealing nanogranular texture. The distances between columns are ∼500 nm, corresponding to the cell size of the textured substrate and the gaps between columns are 100-200 nm. When the porous Ti-7 at% Si film is anodized at a constant current density in ammonium pentaborate electrolyte, the growth of a uniform amorphous oxide film continues to ∼35 V, while it is limited to less than 6 V on the porous Ti film. The maximum voltage of the growth of uniform amorphous oxide films on the Ti-7 at% Si films is similar for both the flat and porous columnar films, suggesting little influence of surface roughness on the amorphous-to-crystalline transition of growing anodic oxide under the high electric field. Due to the suppression of crystallization to sufficiently high voltages, the anodic oxide films formed on the porous Ti-7 at% Si film shows markedly improved dielectric properties, in comparison with those on the porous Ti film.  相似文献   

7.
Transparent zinc oxide (ZnO) thin films with a thickness from 10 to 200 nm were prepared by the PLD technique onto silicon and Corning glass substrates at 350 °C, using an Excimer Laser XeCl (308 nm). Surface investigations carried out by atomic force microscopy (AFM) and X-ray diffraction (XRD) revealed a strong influence of thickness on film surface topography. Film roughness (RMS), grain shape and dimensions correlate with film thickness. For the 200 nm thick film, the RMS shows a maximum (13.9 nm) due to the presence of hexagonal shaped nanorods on the surface. XRD measurements proved that the films grown by PLD are c-axis textured. It was demonstrated that the gas sensing characteristics of ZnO films are strongly influenced and may be enhanced significantly by the control of film deposition parameters and surface characteristics, i.e. thickness and RMS, grain shape and dimension.  相似文献   

8.
High-temperature (HT) AIN films were grown on (0 0 0 1) sapphire by low-pressure flow-modulated (FM) metal organic vapor phase epitaxy (MOVPE) with and without inserting a thin medium-temperature (MT) AIN layer. To suppress parasitic reactions between the sources of trimethylaluminum (TMA) and ammonia (NH3), TMA and NH3 was introduced to the reactor of MOVPE by alternating supply way. Surface morphology and crystalline quality were characterized by a scanning electronic microscopy (SEM), atomic force microscopy (AFM) and X-ray rocking curve (XRC) measurements of (0 0 0 2) and (10-12) diffractions. The AFM and SEM measurements indicated that the thin MT-AIN layer had a strong influence on the surface morphology of the HT-AIN films. The surface morphology became quite smooth by inserting the thin MT-AIN layer and surface RMS roughness values were 0.84 nm and 13.4 nm for the HT-AIN films with and without inserting the thin MT-AIN buffer layer, respectively. By etching the samples in aqueous KOH solution, it was found that the polarity of AIN films was different, the HT-AIN film with the thin MT-AIN layer could not be etched, indicating that the film had an Al-polar surface; however, the film without the MT-AIN layer was etched, which was explained that that film had a N- or mixed-polar surface. The mechanism for the origin of the different polarity of HT-AIN with and without the thin MT-AIN layer was proposed and discussed in detail.  相似文献   

9.
Microcrystalline silicon (μc-Si:H) thin films with and without boron doping are deposited using the radio-frequency plasma-enhanced chemical vapour deposition method. The surface roughness evolutions of the silicon thin films are investigated using ex situ spectroscopic ellipsometry and an atomic force microscope. It is shown that the growth exponent β and the roughness exponent α are about 0.369 and 0.95 for the undoped thin film, respectively. Whereas, for the boron-doped μc-Si:H thin film, β increases to 0.534 and α decreases to 0.46 due to the shadowing effect.  相似文献   

10.
Mirror-like and pit-free non-polar a-plane (1 1 −2 0) GaN films are grown on r-plane (1 −1 0 2) sapphire substrates using metalorganic chemical vapor deposition (MOCVD) with multilayer high-low-high temperature AlN buffer layers. The buffer layer structure and film quality are essential to the growth of a flat, crack-free and pit-free a-plane GaN film. The multilayer AlN buffer structure includes a thin low-temperature-deposited AlN (LT-AlN) layer inserted into the high-temperature-deposited AlN (HT-AlN) layer. The results demonstrate that the multilayer AlN buffer structure can improve the surface morphology of the upper a-plane GaN film. The grown multilayer AlN buffer structure reduced the tensile stress on the AlN buffer layers and increased the compressive stress on the a-plane GaN film. The multilayer AlN buffer structure markedly improves the surface morphology of the a-plane GaN film, as revealed by scanning electron microscopy. The effects of various growth V/III ratios was investigated to obtain a-plane GaN films with better surface morphology. The mean roughness of the surface was 1.02 nm, as revealed by atomic force microscopy. Accordingly, the multilayer AlN buffer structure improves the surface morphology and facilitates the complete coalescence of the a-plane GaN layer.  相似文献   

11.
The hydrophilicity of RF sputtered thin films of: (a) pure TiO2 and (b) TiO2 doped with 0.3% Ce, 0.4% Nb, and 0.4% N (atomic percents) was investigated macroscopically by measurements of the contact angle between water and film surface. The results are discussed in terms of the connection of the hydrophilic and photocatalytic properties of the materials with their structure, morphology and optical characteristics. The 280 nm thick films were deposited on optical glass substrates at 250 °C. Film structure and surface morphology were investigated by X-ray diffraction and atomic force microscopy. The surface roughness was derived from atomic force microscopy and ellipsometric data. The contact angle of de-ionized water with film surface was monitored during photo-activation and after irradiating with near-UV light. The surface super-hidrophilicity of all the investigated samples decays, when samples are kept in darkness for 48 h after irradiation. The hydrophilic behavior of the doped TiO2 thin films is discussed in terms of the effects of surface roughness, phase transformations enhanced by doping and charge carrier recombination.  相似文献   

12.
We have grown lead iron niobate thin films with composition Pb(Fe1/2Nb1/2)O3 (PFN) on (0 0 1) SrTiO3 substrates by pulsed laser deposition. The influence of the deposition conditions on the phase purity was studied. Due to similar thermodynamic stability spaces, a pyrochlore phase often coexists with the PFN perovskite phase. By optimizing the kinetic parameters, we succeeded in identifying a deposition window which resulted in epitaxial perovskite-phase PFN thin films with no identifiable trace of impurity phases appearing in the X-ray diffractograms. PFN films having thicknesses between 20 and 200 nm were smooth and epitaxially oriented with the substrate and as demonstrated by RHEED streaks which were aligned with the substrate axes. X-ray diffraction showed that the films were completely c-axis oriented and of excellent crystalline quality with low mosaicity (X-ray rocking curve FWHM?0.09°). The surface roughness of thin films was also investigated by atomic force microscopy. The root-mean-square roughness varies between 0.9 nm for 50-nm-thick films to 16 nm for 100-nm-thick films. We also observe a correlation between grain size, surface roughness and film thickness.  相似文献   

13.
In this study, we investigated the surface properties of diamond-like carbon (DLC) films for biomedical applications through plasma etching treatment using oxygen (O2) and hydrogen (H2) gas. The synthesis and post-plasma etching treatment of DLC films were carried out by 13.56 MHz RF plasma enhanced chemical vapor deposition (PECVD) system. In order to characterize the surface of DLC films, they were etched to a thickness of approximately 100 nm and were compared with an as-deposited DLC film. We obtained the optimum condition through power variation, at which the etching rate by H2 and O2 was 30 and 80 nm/min, respectively. The structural and chemical properties of these thin films after the plasma etching treatment were evaluated by Raman and Fourier transform infrared (FT-IR) spectroscopy. In the case of as-deposited and H2 plasma etching-treated DLC film, the contact angle was 86.4° and 83.7°, respectively, whereas it was reduced to 35.5° in the etching-treated DLC film in O2 plasma. The surface roughness of plasma etching-treated DLC with H2 or O2 was maintained smooth at 0.1 nm. These results indicated that the surface of the etching-treated DLC film in O2 plasma was hydrophilic as well as smooth.  相似文献   

14.
Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10−6 mbar in the temperature range from 400 to 800 °C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J × cm−2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated.Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature.  相似文献   

15.
Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 °C, while post-deposition annealing at 400 °C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.  相似文献   

16.
HgCdTe thin films have been deposited on Si(1 1 1) substrates at different substrate temperatures by pulsed laser deposition (PLD). An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as laser source. The influences of the substrate temperature on the crystalline quality, surface morphology and composition of HgCdTe thin films were characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDS). The results show that in our experimental conditions, the HgCdTe thin films deposited at 200 °C have the best quality. When the substrate temperature is over 250 °C, the HgCdTe film becomes thermodynamically unstable and the quality of the film is degraded.  相似文献   

17.
Strontium and calcium-modified lead titanate (Pb0.70Ca0.15Sr0.15)TiO3 soft chemistry-derived thin films were prepared on platinum-coated silicon substrate by spin-coating method. Investigations were made on the structure, surface morphology and electrical properties of the film. The results by XRD and FE-SEM showed that the film exhibits a pure tetragonal perovskite phase and an average grain size of about 50-60 nm, respectively. Electrical measurements of a metal-ferroelectric-metal type capacitor exhibited a stable and switchable electrical polarization in the film. The structure of the Au/PCST/Pt capacitor showed well-saturated hysteresis loops at an applied voltage of 300 kV/cm with remanent polarization and coercive field values of 22 μC/cm2 and 100 kV/cm, respectively. At 100 kHz, the dielectric constant and the dielectric loss of the (Pb0.70Ca0.15Sr0.15)TiO3 thin film with thickness 240 nm were 528 and 0.05, respectively.  相似文献   

18.
Hydrogenated polycrystalline SixGe1−x films, with a varying silicon fraction x ≤ 0.246, were in situ deposited in an argon and hydrogen mixture at 500 °C using radio frequency sputtering with an aim to develop a material for the bottom cell of a low cost monolithic tandem solar cell. Silicon and germanium atomic compositions of the films were determined by X-ray photoelectron spectroscopy (XPS). Structural evolution revealed by Raman and X-ray diffraction (XRD) indicated that the crystallinity of the films was improved with decreasing silicon fraction, accompanied with an increase of surface roughness verified by atomic force microscopy (AFM). Optical band gaps of these films derived from Tauc plots, which were calculated from reflectance/transmittance measurements, decreased with decreasing silicon fraction. Resistivity of the films, determined by four-point-probe technique, significantly decreased as well. High quality with low thermal budget obtained in this work suggests the films could be used in thin film solar cells on glass.  相似文献   

19.
In this study, a Nd:YAG laser with wavelength of 1064 nm is used to scribe the indium tin oxide (ITO) thin films coated on three types of substrate materials, i.e. soda-lime glass, polycarbonate (PC), and cyclic-olefin-copolymer (COC) materials with thickness of 20 nm, 30 nm, and 20 nm, respectively. The effect of exposure time adjusted from 10 μs to 100 μs on the ablated mark width, depth, and electrical properties of the scribed film was investigated. The maximum laser power of 2.2 W was used to scribe these thin films. In addition, the surface morphology, surface reaction, surface roughness, optical properties, and electrical conductivity properties were measured by a scanning electron microscope, a three-dimensional confocal laser scanning microscope, an atomic force microscope, and a four-point probe. The measured results of surface morphology show that the residual ITO layer was produced on the scribed path with the laser exposure time at 10 μs and 20 μs. The better edge qualities of the scribed lines can be obtained when the exposure time extends from 30 μs to 60 μs. When the laser exposure time is longer than 60 μs, the partially burned areas of the scribed thin films on PC and COC substrates are observed. Moreover, the isolated line width and resistivity values increase when the laser exposure time increases.  相似文献   

20.
Crystalline diamond (CD) particles have been incorporated in diamond-like carbon (DLC) film structure in order to improve DLC electrochemical corrosion resistance. This paper shows the investigation of CD-DLC friction behavior according to the CD average sizes and concentration. The films were growth over 304 stainless steel using plasma enhanced chemical vapor deposition. The response surface methodology was used to develop a mathematical modeling of friction for these films, using the experimental results, in order to identify parameters that control friction and construct tribological maps according to the CD average sizes. The presence of bigger CD particles (250 and 500 nm) increased the film roughness. Films with CD particles of 4 nm presented the most homogeneous friction map, with minor variation in friction coefficient with the increase/decrease of load and sliding speed even when the CD concentration increase. This result suggests that in CD-DLC films containing CD particles of 4 nm average size, the nanoparticles are better incorporated in DLC structure due to its average size (4 nm) that is near than DLC grain size and could occupy the nanospaces between DLC grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号