首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Copper nanoparticle electrodeposition and consolidation processes were studied on boron doped diamond (BDD) electrode submitted to hydrogen and oxygen plasma treatments. The modified BDD films were applied as electrodes for nitrate electroreduction. The results showed that both treatments have a strong influence on the copper deposition and dissolution processes. For BDD treated with hydrogen plasma the copper electrodeposit was homogeneous with high particle density. This behavior was attributed to the BDD surface hydrogenation that improved its conductivity. On the other hand, the treatment with oxygen plasma was important for the copper nanoparticle consolidation on BDD surface, confirmed by the result's reproducibility for nitrate reduction. This performance may be associated with the formation of oxygen groups that can act as anchor points for Cu-clusters, enhancing the interfacial adhesion between diamond and the metal coating. The best electrochemical nitrate reduction response was obtained in acid media, where occurred the separation of the nitrate reduction process and the water reduction reaction.  相似文献   

2.
We achieve a successful novel lift-off of patterning Pt/Ti electrodes on SiO2/Si substrates by employing ZnO sacrificial layer deposition and patterning, successive uniform Pt/Ti deposition and final lift-off. Then we deposit PZT thin films on the electrodes. Compared with the conventional lift-off processes for the electrodes, this novel process does not need post-annealing, which must be performed after conventional lift-off process. It is demonstrated that the electrodes patterned by the novel lift-off process have stronger adhesion. The electrodes and the PZT films on the electrodes are more compact and smoother than those by the conventional lift-off process.  相似文献   

3.
Microcrystalline boron-doped diamond (BDD) films are synthesized on the silicon substrate by the hot-filament chemical vapor deposition method under the gas mixture of hydrogen and methane in the presence of boron carbide (B4C) placed in front of filaments. The observed results of scanning electron microscopy, Raman spectroscopy and X-ray diffraction show the morphologies. Microstructures for various deposition pressures of as-grown diamond films are found to be dependent on the change of deposition pressure. These results reveal that with the increase of deposition pressure, resistivity decreases and increase in the grain size is noted in the presence of B4C. Resistivity shows a sudden fall of about three orders of magnitude by the addition of boron in the diamond films. This is due to the crystal integrity induced by B-atoms in the structure of diamond in the presence of B4C. These results are also significant for the conventional applications of BDD materials. The effects of deposition pressure on the overall films morphology and the doping level dependence of the diamond films have also been discussed.  相似文献   

4.
Diamond films were successfully synthesized on aluminum nitride(AlN) ceramic substrates by hot-filament chemical vapor deposition (HFCVD) method. The thermal conductivity of the diamond film/aluminum nitride ceramic (DF/AlN) composites was studied by photothermal deflection (PTD) technique. It has reached 2.04 W/cm K, 73% greater than that of AlN ceramic. Compared with the measurement of scanning electron microscopy (SEM) and Raman spectroscopy, the influence of diamond films on the thermal conductivity of the composites was pointed out. The adhesion and the stresses were also studied. The unusual stability and very good adhesion of the diamond film on AlN ceramic substrate obtained is attributed to the formation of aluminum carbide. Received: 24 March 1998 / Accepted: 8 March 1999 / Published online: 5 May 1999  相似文献   

5.
We have studied the effect of copper nanoparticles produced by laser ablation on the ring-opening polymerization of 1,1,3,3-tetraphenyl-1,3-disilacyclobutane (TPDC). The particle size and distribution of laser-ablated, copper nanoparticles were controlled by laser-ablation conditions such as ambient pressure, laser fluence, and distance between target and substrate. Laser-ablated, copper nanoparticles induced polymerization of TPDC effectively, resulting in formation of poly(diphenylsilylenemethylene) (PDPhSM) thin films. The polymerization efficiency depended mainly on the particle size and the surface concentration of copper nanoparticles deposited on the TPDC films by laser ablation. No clear tendency was observed between oxidation of Cu nanoparticles and polymerization efficiency. This technique enables us to easily fabricate PDPhSM thin films and may become a new method for fabricating polymer–metal nanocomposites. PACS 81.05.Lg; 82.35.Np; 82.50.Hp  相似文献   

6.
Diamond nucleation on copper (Cu) substrates was investigated by graphite seeding and CO2 laser irradiation at initial stages of the combustion-flame deposition. A graphite aerosol spray was used to generate a thin layer of graphite powders (less than 1 μm) on Cu substrates. The graphite-seeded Cu substrates were then heated by a continuous CO2 laser to about 750 °C within 1 min. It was found that diamond nucleation density after this treatment was more than three times as much as that on the virgin Cu substrates. As a consequence, diamond films up to 4 μm were obtained in 5 min. The enhancement of diamond nucleation on the graphite-seeded Cu substrates was attributed to the formation of defects and edges during the etching of the seeding graphite layers by the OH radicals in the flame. The defects and edges served as nucleation sites for diamond formation. The function of the CO2 laser was to rapidly heat the deposition areas to create a favorable temperature for diamond nucleation and growth.  相似文献   

7.
Diamond film is an ultra-durable optical material with high thermal conductivity and good transmission in near-infrared and far-IR (8-14 μm) wavebands. CVD diamond is subjected to oxidation at temperature higher than 780 °C bared in air for 3 min, while it can be protected from oxidation for extended exposure in air at temperature up to 900 °C by a coating of aluminum nitride. Highly oriented AlN coatings were prepared for infrared windows on diamond films by reactive sputtering method and the average surface roughness (Ra) of the coatings was about 10 nm. The deposited films were characterized by X-ray diffraction (XRD) and atom force microscope (AFM). XRD confirmed the preferential orientation nature and AFM showed nanostructures. Optical properties of diamond films coated AlN thin film was investigated using infrared spectrum (IR) compared with that for as-grown diamond films.  相似文献   

8.
The aim of the presented study is to investigate the applicability of electrochemical oxidation of aromatic compounds containing heteroatoms, e.g. waste from production of pesticides or pharmaceutics, at a borondoped diamond (BDD) electrode. The BDD electrodes were synthesized by microwave plasma enhanced chemical vapour deposition (MW PE CVD). Investigation of the electrode surface by optical microscopy and scanning electron microscopy (SEM) confirmed that the synthesized layer was continuous and formed a densely packed grain structure with an average roughness of less than 0:5 ??m. The influence of important electrochemical parameters: current density, kind of reactor, pH or mixing operation, on the efficiency of the oxidation was investigated. The fouling of electrode??s surface caused by the deposition of organic material was observed during CV and galvanostatic experiments. At low current density the oxidation rate constant k was low, but the current efficiency was relatively high. The BDD can be used successfully to remove heterogeneous aromatic compounds existing either as molecules or cations. During 4 h of electrolysis 95% of aromatic compounds were electrochemically decomposed to mineral forms. It was observed that the influence of the initial pH on mineralization was marginal.  相似文献   

9.
Nanowires of various inorganic materials have been fabricated due to the realization of their applications in different fields. Large-area and uniform cupric oxide (CuO) nanowires were successfully synthesized by a very simple thermal oxidation of copper thin films. The copper films were deposited by electron beam evaporation onto Ti/Si substrates, in which Ti film was first deposited on silicon substrate to serve as adhesion layer. The structure characterization revealed that these nanowires are monoclinic structured single crystallites. The effects of different growth parameters, namely, annealing time, annealing temperature, and film thickness on the fabrication of the CuO nanowires were investigated by scanning electron microscopy. A typical procedure simply involved the thermal oxidation of these substrates in air and within the temperature range from 300 to 700 °C. It is found that nanowires can only be formed at thermal temperature of 400 °C. It is observed that the growth time has an important effect on the length and density of the CuO nanowires, whereas the average diameter is almost the same, i.e.50 nm. Different from the vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism, the growth of nanowires is found to be based on the accumulation and relaxation of the stress.  相似文献   

10.
In this work, the influence of cathodic (Red) and anodic (Ox) pre-treatment on boron doped diamond (BDD) films grown with different sp2/sp3 ratios was systematically studied. The sp2/sp3 ratios were controlled by the addition of CH4 of 1,3,5 and 7 sccm in the gas inlet during the growth process. The electrodes were treated in 0.5 mol L−1 H2SO4 at −3 and 3 V vs Ag/AgCl, respectively, for 30 min. The electrochemical response of BDD films was investigated using electrochemical impedance spectroscopy (EIS) and Mott–Schottky Plot (MSP) measurements. Four film sample sets were produced in a hot filament chemical vapor deposition reactor. During the growth process, an additional H2 line passing through a bubbler containing the B2O3 dissolved in methanol was used to carry the boron. The scanning electron microscopy morphology showed well faced films with a small decrease in their grain size as the CH4 concentration increased. The Raman spectra depicted a pronounced sp2 band, mainly for films with 5 and 7 sccm of CH4. MSP showed a decrease in the acceptor concentration as the CH4 increased indicating the CH4 influence on the doping process for Red–BDD and Ox–BDD samples. Nonetheless, an apparent increase in the acceptor concentrations for both Ox–BDD samples was observed compared to that for Red–BDD samples, mainly attributed to the surface conductive layer (SCL) formation after this strong oxidation process. The EIS Nyquist plots for Red–BDD showed a capacitance increase for the films with higher sp2 content (5 and 7 sccm). On the other hand, the Nyquist plots for Ox–BDD can be described as semicircles near the origin, at high frequencies, where their charge transfer resistance strongly varied with the sp2 increase in such films.  相似文献   

11.
In this work carbon nanotubes were first grown on copper substrate by chemical vapor deposition method. The Sn deposits were then deposited on the surface of as-grown carbon nanotubes by three different methods: electroplating, electroless plating and displacing methods. The Sn deposits on CNTs surface were characterized by both scanning electron microscope and field emission scanning electron microscope. The compositions of Sn deposits were analyzed by energy dispersive X-ray spectroscope. The results showed that both electroless plating and displacing deposits can but the electroplating deposits cannot cover on the surface of CNTs. Besides C, Sn, Ni and Pd, the electroless deposits also contain element of oxygen and the displacing deposits also contain elements of copper and oxygen.  相似文献   

12.
x Ba1-xNb2O6 (x=0.5) films (abbreviated as SBN:0.5) on SiO2-coated Si substrates are potential components for the application of integrated electro-optics devices. SBN:0.5 optical waveguiding thin films on SiO2-coated Si substrates with a very thin MgO diffusion buffer have been successfully prepared by pulsed laser deposition. The as-grown films have a refractive index of 2.28, which is close to that of bulk SBN. X-ray analysis showed that the as-grown films have a single-phase tetragonal tungsten bronze structure. The SBN:0.5 thin films prepared by PLD exhibit favorable ferroelectric and optical waveguiding properties. The composition and the morphology of the films were also examined by XPS and by SEM, respectively. Ferroelectric SBN:0.5 optical waveguiding thin films on SiO2-coated Si substrates are expected to be used in integrated electro-optic devices. Received: 27 February 1997/Accepted: 17 October 1997  相似文献   

13.
Thin films of copper oxide were obtained through thermal oxidation (100-450 °C) of evaporated metallic copper (Cu) films on glass substrates. The X-ray diffraction (XRD) studies confirmed the cubic Cu phase of the as-deposited films. The films annealed at 100 °C showed mixed Cu-Cu2O phase, whereas those annealed between 200 and 300 °C showed a single cubic Cu2O phase. A single monoclinic CuO phase was obtained from the films annealed between 350 and 450 °C. The positive sign of the Hall coefficient confirmed the p-type conductivity in the films with Cu2O phase. However, a relatively poor crystallinity of these films limited the p-type characteristics. The films with Cu and CuO phases show n-type conductivity. The surface of the as-deposited is smooth (RMS roughness of 1.47 nm) and comprised of uniformly distributed grains (AFM and SEM analysis). The post-annealing is found to be effective on the distribution of grains and their sizes. The poor transmittance of the as-deposited films (<1%) is increased to a maximum of ∼80% (800 nm) on annealing at 200 °C. The direct allowed band gap is varied between 2.03 and 3.02 eV.  相似文献   

14.
Process of direct copper plating on ABS plastics   总被引:1,自引:0,他引:1  
The processes of direct copper plating on ABS plastics were investigated by atomic force microscopy (AFM), ultraviolet-visible absorption spectrometry (UV-vis) and X-ray fluorescence spectroscopy (XRF) techniques. The substrates were etched by CrO3/H2SO4 solution containing Pd2+ ions, catalyzed by Pd/Sn colloids solution and accelerated in an alkaline solution containing copper ions. The Pd2+ ions in etching solution can reduce the surface roughness and enhance the colloids adsorption. The good dispersivity colloids have excellent catalysis and its UV-vis peaks broaden. After acceleration, when the stability of Cu2+-complex is relatively low, Sn2+ was oxidized by Cu2+ in the alkaline solution meanwhile Cu2O can be formed. The disproportionation reaction of Cu2O will proceed and metallic copper forms between the Pd particles, so the conductivity of ABS surface increased. The copper particles play an important role in determining the uniformity of the propagation of copper plating. The particles of copper plating layer were uniformity and fine. The atomic concentration and the thickness of copper layer were analyzed by XRF.  相似文献   

15.
UV photoexcitation of (t-butylethynyl copper)24 cluster films induces segregation of the crystals into metallic and organic phases and leads to evolve the metallic sheets sandwiched by organic polymers. The growth of the metallic crystals in the plane of the photo-electromagnetic field is attributed due to plasmon-plasmon interaction among nanoparticles embedded in dielectric polymer matrices. The surface enhanced photochemical reaction of residual cluster molecules on the photon incident direction is expected to take an important role for joining the metal particles to produce a metallic sheet. We can apply this phenomenon for photolithographic copper pattern generation on a flexible base plate.  相似文献   

16.
A Bi-promoted charcoal-supported Pd–Pt oxidation catalyst prepared from colloidal NOct4Cl-stabilized Pd–Pt nanoparticles was investigated by means of X-ray photoelectron spectroscopy (XPS). Pd 3d, Pt 4f, Bi 4f, C 1s and O 1s spectra of the colloid, the supported colloid catalyst and a conventional charcoal-supported Pd–Pt/Bi coimpregnation catalyst (Degussa, CEF 196 RA/W) were measured. Both catalysts were explored unused (as-prepared) and after deactivation in the heterogeneous catalytic oxidation of glucose to gluconic acid. The spectra are analyzed to elucidate the higher starting activity of the Pd–Pt/Bi/C colloid catalyst, especially the role of the promotor Bi and the mechanisms leading to catalyst deactivation. The higher starting activity of the colloid catalyst is explained by the presence of completely reduced Pd and Pt, threevalent Bi and a smaller particle size in contrast to the conventional catalyst which contains partly oxidized Pd and a non-unique chemical state of Bi. The deactivation of both catalysts is suggested to be due to metal dissolution, particle growth and chemical poisoning.  相似文献   

17.
The boron-doped diamond (BDD) thin-film electrode with high quality using industrially titanium plate (Ti/BDD) as substrate has been prepared and firstly used in the oxidation of anthraquinone dye Alizarin Red S (ARS) in wastewaters. The Ti/BDD electrodes are shown to have high concentration of sp3-bonded carbon and wide electrochemical window. The results of the cyclic voltammetries show that BDD has unique properties such as high anodic stability and the production of active intermediates at the high potential. The oxidation regions of ARS and water are significantly separated at the Ti/BDD electrode, and the peak current increases linearly with increasing ARS concentration. The bulk electrolysis shows that removal of chemical oxygen demand (COD) and color can be completely reached and the electrooxidation of ARS behaves as a mass-transfer-controlled process at the Ti/BDD electrode. It is demonstrated that the performances of the Ti/BDD electrode for anodic oxidation ARS have been significantly improved with respect to the traditional electrodes.  相似文献   

18.
Fabricating composite thin films is an effective and economic solution to improve the thermal performance of the films. The diamond particles of different sizes were successfully embedded in AlN thin films by a chemical solution approach, which was confirmed by scanning electron microscope, x-ray diffraction analysis and x-ray photoelectron spectroscopy. The thermal properties of the films embedded with different diamond particles were studied by using a 3-omega method, which was observed to be strongly dependent on the particle size. A 19 % enhancement in thermal conductivity can be achieved by embedding diamond particles of 1-μm radius in AlN thin films. However, the thermal conductivity decreases after embedding with 10-nm radius diamond particles. The results are discussed with high volume model, which confirms that the interface thermal resistance between the embedded materials and the films plays an important role in determining the thermal conductivity of the as-grown carbon material embedded AlN films.  相似文献   

19.
The electrochemical properties of undoped diamond polycrystalline films grown on tungsten wire substrates using methanol as a precursor are described. The diamond film quality was changed by introducing sp2-bonded non-diamond carbon impurity through adjustment of the methanol-to-hydrogen (C/H) source gas ratio used for diamond growth.The electrodes were characterized by Raman spectroscopy, scanning electronic microscopy (SEM) and cyclic voltammetry (CV).Diamond coated tungsten wires were then used as a working electrode to ascertain their electrochemical behavior in electrolytic medium. Electrochemical windows of these films were found to be suitable in the potential range of [−2.5 V, +2.2 V] vs. Ag/AgCl in acid medium (0.1 M KCl).The electrochemical behavior was evaluated also using the Fe(CN)63−/4−redox couple.The results demonstrate that the grain boundaries and sp2-hybridized carbon impurity can have a significant influence on electrochemical window of undoped diamond electrodes. It was observed that with increasing sp2 carbon impurity concentration the electrochemical window decreases.  相似文献   

20.
Thin single crystal copper films have been grown and oxidized on (100) faces of cleaved sodium chloride discs suspended from a vacuum ultramicrobalance. Optical transmittance measurements between 400–800 nm and electron microscopic investigations were also used to characterize the oxidation process. Polycrystalline copper films grown at room temperature are substantially the same as those grown previously on glass substrates. Single crystalline growth at 325 ° C on rock salt produces a characteristic transmittance curve due to the “island” nature of the films. These curves compare favorably with other previously published results. Single crystal copper films oxidized to CuO0.67 at temperatures of 117–159°C in 100 Torr of oxygen for films less than 500 A thick. For films 378 to 1000 Å thick, compositions of CuO0.52 to CuO0.62 were obtained between 123–176°C. The oxidation to less than CuO0.67 is attributed to the existence of islands in these films which are thicker than the average film thickness, and require higher temperatures or thinner films to permit oxidation to CuO0.67 before the nucleation of CuO sets in.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号