首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
The simulated results of the influence of twin and three satellite formation mode on the accuracy of GRACE Earth's gravitational field are interpreted from the viewpoint of physics. Because the effective satellite observation information of Earth's gravitational field recovery from three-satellite formation mode is only one time more than that of twin satellites, the improvement of the accuracy of Earth's gravitational field is far lower than one order of magnitude based on the simple two-times differences between three satellites. Three efficient ways of improving largely the accuracy of measurement of the Earth's gravitational field in the future international satellite gravity measurement programme, including proper decrease of satellite orbital altitude, the increase of accuracy from key payloads and an innovation of satellite observation mode are proposed.  相似文献   

2.
Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principle. Secondly, a study for the requirements demonstration on the next-generation GOCE Follow-On satellite gravity gradiometry system is developed using different satellite orbital altitudes and measurement accuracies of satellite gravity gradiometer by the new analytical error model of SGG. The research results show that it is preferable to design satellite orbital altitudes of 300 km-400km and choose the measurement accuracies of 10-13/s2 -10-15/s2 from satellite gravity gradiometer. Finally, the complementarity of the four-stage satellite gravity missions, including past CHAMP, current GRACE, and GOCE, and next-generation GOCE Follow-On, is contrastively demonstrated for precisely recovering the Earth’s full-frequency gravitational field with high spatial resolution.  相似文献   

3.
郑伟  许厚泽  钟敏  员美娟 《中国物理 B》2012,21(10):109101-109101
The accuracy of the Earth’s gravitational field measured from the gravity field and steady-state ocean circulation explorer(GOCE),up to 250 degrees,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij from the satellite gravity gradiometry(SGG) are contrastively demonstrated based on the analytical error model and numerical simulation,respectively.Firstly,the new analytical error model of the cumulative geoid height,influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij are established,respectively.In 250 degrees,the GOCE cumulative geoid height error measured by the radial gravity gradient V zz is about 2 1/2 times higher than that measured by the three-dimensional gravity gradient V ij.Secondly,the Earth’s gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient V zz and three-dimensional gravity gradient V ij by numerical simulation,respectively.The study results show that when the measurement error of the gravity gradient is 3×10 12 /s 2,the cumulative geoid height errors using the radial gravity gradient V zz and three-dimensional gravity gradient V ij are 12.319 cm and 9.295 cm at 250 degrees,respectively.The accuracy of the cumulative geoid height using the three-dimensional gravity gradient V ij is improved by 30%-40% on average compared with that using the radial gravity gradient V zz in 250 degrees.Finally,by mutual verification of the analytical error model and numerical simulation,the orders of magnitude from the accuracies of the Earth’s gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients,respectively.Therefore,it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10 13 /s 2-10 15 /s 2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.  相似文献   

4.
郑伟  许厚泽  钟敏  员美娟 《中国物理 B》2009,18(8):3597-3604
Firstly, the new combined error model of cumulative geoid height influenced by four error sources, including the inter-satellite range-rate of an interferometric laser (K-band) ranging system, the orbital position and velocity of a global positioning system (GPS) receiver and non-conservative force of an accelerometer, is established from the perspectives of the power spectrum principle in physics using the semi-analytical approach. Secondly, the accuracy of the global gravitational field is accurately and rapidly estimated based on the combined error model; the cumulative geoid height error is 1.985× 10-1~m at degree 120 based on GRACE Level 1B measured observation errors of the year 2007 published by the US Jet Propulsion Laboratory (JPL), and the cumulative geoid height error is 5.825× 10^ - 2~m at degree 360 using GRACE Follow-On orbital altitude 250~km and inter-satellite range 50 km. The matching relationship of accuracy indexes from GRACE Follow-On key payloads is brought forward, and the dependability of the combined error model is validated. Finally, the feasibility of high-accuracy and high-resolution global gravitational field estimation from GRACE Follow-On is demonstrated based on different satellite orbital altitudes.  相似文献   

5.
We apply concepts of quantum optical coherence to characterize the coherent generation of a molecular field from a quantum-degenerate atomic sample, and discuss the impact of the quantum statistics of the atoms on that field. For atoms initially in a BEC the resulting molecular field is to a good approximation coherent. This is in sharp contrast to the case of atoms in a normal Fermi gas, where we can made use of an analogy with the Tavis-Cummings model to show that the statistics of the resulting molecular field is similar to that of a single-mode chaotic light field. The BCS case interpolates between the two extremes, with an 'incoherent' contribution from unpaired atoms superposed to a 'coherent' contribution from atomic Cooper pairs. We also comment on the temporal fluctuations characteristic of the formation of molecular dimers from ultracold fermionic atoms.  相似文献   

6.
Jupiter's aurora exhibits three distinct regions: the satellite footprint emissions, the main oval emissions and all polar emissions. As the case of the Earth, the auroral morphology contains both qualitative and quantitative clues about magnetospheric structure and dynamics. We map along the magnetic field lines to the equatorial plane to track the plasma resources of the main oval in an equilibrium model of Jupiter's magnetosphere. The footprints of the satellites are good references to help us to check the mapping. We find out that the plasma of oval emissions originates from the equatorial plane with a distance of~22.0RJ, which is closer to the Jupiter than 30RJ given by the VIP4 model. However the difference does not deny the conclusion that the upward Birkeland currents produce the oval emissions.  相似文献   

7.
Parabolic trough collectors generate thermal energy from solar energy. Especially, they are very convenient for applications in high temperature solar power systems. To determine the design parameters, parabolic trough collectors must be analysed with optical analysis. In addition, thermodynamics (energy and exergy) analysis in the development of an energy efficient system must be achieved. Solar radiation passes through Earth's atmosphere until it reaches on Earth's surface and is focused from the parabolic trough collector to the tube receiver with a transparent insulated envelope. A11 of them constitute a complex mechanism. We investigate the geometry of parabolic trough reflector and characteristics of solar radiation to the reflecting surface through Earth's atmosphere, and calculate the collecting totM energy in the receiver. The parabolic trough collector, of which design parameters are given, is analysed in regard to the energy and exergy analysis considering the meteorological specification in May, June, July and August in 1sparta/TUrkey, and the results are presented.  相似文献   

8.
A theory of an electron affinity for an ionic cluster is proposed both in a quasiclassical approach and with quantization of a polarization electric field in a nanopartiele. A critical size of the cluster regarding in formation of an electron's autolocalized state, dependencies of energy and radius of a polaron on a cluster's size are obtained by a variational method. It has been found that binding energy of the electron in the cluster depends on a eluster's radius but a radius of electron's auto-localization does not depend on the cluster's radius and it equals to the polaron radius in a corresponding infinity crystal. A bound state of the electron in a cluster is possible only if the duster's radius is more than the polaron radius.  相似文献   

9.
From Kaula’s Earth gravitational potential written in classical orbital elements, the unified ideal model of mean motion resonance of artificial satellites due to geopotential perturbations is developed in this paper first, through a suitable sequence of canonical transformations constructed by implicit functions. This unified ideal orbital resonance model is valid for all the commensurabilities between the rotational angular velocity of the Earth and the angular velocities of mean orbital motion of artificial satellites with arbitrary inclination and small eccentricity, and can be also transformed into Garfinkel’s general expression of ideal resonance problem. Then 1/1 resonance of the 24-hour satellite with arbitrary inclination and small eccentricity is analyzed under the effect of harmonics of J2 and J 22 of the geopotential, based on the unified ideal model of mean motion resonance. The analytical expressions of the libration period and libration half width of the 1/1 resonance of the 24-hour satellite with arbitrary inclination and small eccentricity are presented.  相似文献   

10.
The energy transfer between ions (protons) and low frequency waves (LFWs) in the frequency range f1 from 0.3 to 10 Hz is observed by Cluster crossing the high-altitude polar cusp. The energy transfer between low frequency waves and ions has two means. One is that the energy is transferred from low frequency waves to ions and ions energy increases, The other is that the energy is transferred from ions to low frequency waves and the ion energy decreases. lon gyratory motion plays an important role in the energy transfer processes. The electromagnetic field of f1 LFWs can accelerate or decelerate protons along the direction of ambient magnetic field and warm or refrigerate protons in the parallel and perpendicular directions of ambient magnetic field, The peak values of proton number densities have the corresponding peak values of electromagnetic energy of low-frequency waves. This implies that the kinetic Alfven waves and solitary kinetic Alfven waves possibly exist in the high-altitude cusp region.  相似文献   

11.
The ionization potential(IP) is a basic property of an atom,which has many applications such as in element analysis.With the Dirac-Slater methods(i.e.,mean field theory),IPs of all occupied orbitals for elements with atomic number(Z ≤119) are calculated conveniently and systematically.Compared with available experimental measurements,the theoretical accuracies of IPs for various occupied orbitals are ascertained.The map of the inner orbital IPs with good accuracies should be useful to select x-ray energies for element analysis.Based on systematic variations of the first IPs for the outermost orbitals in good agreement with experimental values as well as other IPs,mechanisms of electronic configurations of all atomic elements(Z ≤ 119) along the periodic table are elucidated.It is interesting to note that there exist some deficiencies of the intermediate orbital IPs,which are due to electron correlations and should be treated beyond the mean Geld theory.  相似文献   

12.
徐家豪  邵成刚  罗杰  刘祺  邾琳  赵慧慧 《中国物理 B》2017,26(8):80401-080401
A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error source in the test of WEP.The result shows that the uncompensated gravity gradient effect from the coupling term of the dominated gravity gradient multipole moment component q_(21) and the relative multipole field component Q_(21) contributes to an uncertainty of 1×10~(-11) on the E¨otv¨os parameter. We make a Q_(21) compensation to reduce the effect by about 20 times, and the limit of the test precision due to this coupling is improved to a level of a part in 10~(13).  相似文献   

13.
Tung's model was used to analyze anomalies observed in Ti/Si C Schottky contacts. The degree of the inhomogeneous Schottky barrier after annealing at different temperatures is characterized by the ‘T0anomaly' and the difference(△Φ)between the uniformly high barrier height(Φ0B) and the effective barrier height(Φeff B). Those two parameters of Ti Schottky contacts on 4H–Si C were deduced from I–V measurements in the temperature range of 298 K–503 K. The increase in Schottky barrier(SB) height(ΦB) and decrease in the ideality factor(n) with an increase measurement temperature indicate the presence of an inhomogeneous SB. The degree of inhomogeneity of the Schottky barrier depends on the annealing temperature, and it is at its lowest for 500-°C thermal treatment. The degree of inhomogeneity of the SB could reveal effects of thermal treatments on Schottky contacts in other aspects.  相似文献   

14.
Using the recently developed finite-basis-set method with B splines, excited states of H atoms in a magnetic field have been calculated. Energy levels are presented for the ten excited states, 2so, 3d'0, 3po, 3p-1, 3d_1, 4d-1, 3d-2, 4d-2, 4f-2 , and 5f-2 as a function of magnetic field strengths with a range from zero up to 2.35 × 10^6 T. The obtained results are compared with available high accuracy theoretical data reported in the literature and found to be in excellent agreement. The comparison also shows that the current method can produce energy levels with an accuracy higher than the existing high accuracy method [Phys. Rev. A 54 (1996) 287]. Here high accuracy energy levels are for the first time reported for the 3d'0, 4d-1, 4d-2, 4f-2, and 5f-2 states.  相似文献   

15.
The electronic topology is generally related to the Berry curvature,which can induce the anomalous Hall effect in time-reversal symmetry breaking systems.Intrinsic monolayer transition metal dichalcogenides possesses two nonequivalent K and K’ valleys,having Berry curvatures with opposite signs,and thus vanishing anomalous Hall effect in this system.Here we report the experimental realization of asymmetrical distribution of Berry curvature in a single valley in monolayer WSe2 via applying uniaxial strain to break C3v symmetry.As a result,although the Berry curvature itself is still opposite in K and K’ valleys,the two valleys would contribute equally to nonzero Berry curvature dipole.Upon applying electric field E,the emergent Berry curvature dipole D would lead to an out-of-plane orbital magnetization M ∝ D·E,which further induces an anomalous Hall effect with a linear response to E2,known as nonlinear Hall effect.We show the strain modulated transport properties of nonlinear Hall effect in monolayer WSe2 with moderate hole-doping by gating.The second-harmonic Hall signals show quadratic dependence on electric field,and the corresponding orbital magnetization per current density M/J can reach as large as 60.In contrast to the conventional Rashba-Edelstein effect with in-plane spin polarization,such current-induced orbital magnetization is along the out-of-plane direction,thus promising for high-efficient electrical switching of perpendicular magnetization.  相似文献   

16.
吴洪 《中国物理 B》2008,17(8):3026-3034
This paper studies the effect of a charged impurity together with or without an external homogeneous electric field on a quantum ring threaded by a magnetic field B and containing two electrons. The potential caused by the impurity has been plotted which is helpful to the understanding of the electronic structures inside the ring. The deep valley appearing in the potential curve is the source of localization, which affects seriously the Aharonov-Bohm oscillation (ABO) of the energy and persistent current. It also causes the fluctuation of the total orbital angular momentum L of the pair of electrons. It is found that the appearance of the impurity reduces the domain of the fractional ABO. During the increase of B, the domain of the integral ABO may appear earlier when B is even quite small. The transition from the localized states to extended states has also been studied. Furthermore, it has deduced a set of related formulae for a transformation, by which an impurity with a charge ep placed at an arbitrary point Rp is equivalent to an impurity with a revised charge ep placed at the X-axis with a revised radial distance Rp. This transformation facilitates the calculation and make the analysis of the physical result clearer.  相似文献   

17.
何唐梅  张靖仪 《中国物理快报》2007,24(12):3336-3339
We investigate the tunnelling radiation of charged and magnetized massive particles from a Banados-Teitelboim- Zanelli (BTZ) black hole by extending the Parikh-Wilczek tunnelling framework. In order to calculate the emission rate, we reconstruct the electromagnetic field tensor and the Lagrangia~n of the field corresponding to the source with electric and magnetic charges, and treat the charges as an equivalent electric charge for simplicity in the later calculation. The result supports Parikh-Wilczek's conclusion, that is, the Hawking thermal radiation actually deviates from perfect thermality and agrees with an underlying unitary theory.  相似文献   

18.
On December 27,2018,the basic system of the third-generation BeiDou navigation satellite system(BDS-3)completed the deployment of its constellation of 18 MEO networking satellites as well as the construction of the operation control system(OCS)and began to provide basic navigation services to users worldwide.Compared with BDS-2,BDS-3 aims to offer users better navigation signals and higher precision with a series of new technologies.For example,the spaceborne atomic clock of BDS-3 is upgraded for higher performance,the Ka-band inter-satellite link is adopted for inter-satellite ranging and communication,and new B1C and B2a signals are broadcast in addition to B1I and B3I signals(compatible with BDS-2).In addition,a 9-parameter model based on a spherical harmonic function is employed for ionospheric delay corrections.Using the observation data from 18 satellites of the basic system,this paper conducts a comprehensive evaluation of the pseudorange measurement characteristics,signal-in-space(SIS)accuracy of navigation messages and global service capability of BDS-3.The results indicate that the pseudorange measurement multipath effect and observation noise of BDS-3 satellites are better than those of BDS-2;additionally,with the support of inter-satellite links,the user range error(URE)of the BDS-3 satellite broadcast ephemeris is better than 10 cm,the precision of the broadcast clock parameter is better than 1.5 ns,and the SIS accuracy is better than 0.6 m overall.Different from the traditional Klobuchar model,the BeiDou global broadcast ionospheric delay correction model(BDGIM)can provide ionospheric delay corrections better than 70%for worldwide single-frequency users.The service capability evaluation of the basic system consists mainly of the accuracy improvement of the B1I and B3I signals according to BDS-2 as well as the global positioning accuracy of the new signals.These results prove that the BDS-3 basic system has achieved the design goal;that is,both the horizontal and the vertical global positioning accuracies are better than 10 m(95%).In the future,6 MEO satellites as well as 3 GEO satellites and 3 IGSO satellites for regional enhancement purposes will be deployed for full operation;consequently,BDS-3 will definitely provide a higher SIS accuracy and better service capability.  相似文献   

19.
We study the radiative energy level shifts of a two-level atom in dipole coupling to the derivative of a massless scalar quantum field in a spacetime with a perfectly reflecting boundary, and calculate the contributions of vacuum fluctuations and radiation reaction to the level shift. It is found that the energy level shift of the excited state is an oscillating function of the atom's distance from the boundary and it can either be positive or negative, while that of the ground state is always positive. The most remarkable feature is that the energy level shift of the ground state behaves like 1/z^4 when the atom's distance from the boundary, z, is very large as compared to the transition wavelength of the atom, while it behaves like 1/z^3 when z is very small  相似文献   

20.
The present study reports the magnetizations and magneto-transport properties of PrFel_xNixO3 thin films grown by pulsed laser ablation technique on LaA103 snbstrates. From DC M/H plots of these films, weak ferromagnetism or ferrimagnetism behaviors are observed. With Ni substitution, reduction in saturation magnetization is also seen. With Ni doping, variations in saturation field (Hs), coercive field (Hc), Weiss temperature (0), and effective magnetic moment (Pelf) are seen. A small change of magnetoresitance with application of higher field is observed. Various essential parameters like density of state (Nf) at Fermi level, Mott's characteristic temperature (To), and activation energy (Ea) in the presence of and in the absence of magnetic field are calculated. The present observed magnetic properties are related to the change of Fe-O bond length (causing an overlap between the oxygen p orbital and iron d orbital) and the deviation of the Fe-O-Fe angle from 180~. Reduction of magnetic domain after Ni doping is also explored to explain the present observed magnetic behavior of the system. The influence of doping on various transport properties in these thin films indicates a distortion in the lattice structure and single particle band width, owing to stress-induced reduction in unit cell volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号