首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Spin-label W-band (94 GHz) electron paramagnetic resonance (EPR) with a five-loop–four-gap resonator (LGR) was successfully applied to study membrane properties (Mainali et al. J Magn Reson 226:35–44, 2013). In that study, samples were equilibrated with the selected gas mixture outside the resonator in a sample volume ~100 times larger than the sensitive volume of the LGR and transferred to the resonator in a quartz capillary. A seven-loop–six-gap W-band resonator has been developed. This resonator permits measurements on aqueous samples of 150 nL volume positioned in a polytetrafluoroethylene (PTFE) gas permeable sample tube. Samples can be promptly deoxygenated or equilibrated with an air/nitrogen mixture inside the resonator, which is significant in saturation-recovery measurements and in spin-label oximetry. This approach was tested for lens lipid membranes derived from lipids extracted from two porcine lenses (single donor). Profiles of membrane fluidity and the oxygen transport parameter were obtained from saturation-recovery EPR using phospholipid analog spin-labels. Cholesterol analog spin-labels allowed discrimination of the cholesterol bilayer domain and acquisition of oxygen transport parameter profiles across this domain. Results were compared with those obtained previously for membranes derived from a pool of 100 lenses. Results demonstrate that EPR at W-band can be successfully used to study aqueous biological samples of small volume under controlled oxygen concentration.  相似文献   

2.
Spin-lattice relaxation times (T?s) of small water-soluble spin-labels in the aqueous phase as well as lipid-type spin-labels in membranes increase when the microwave frequency increases from 2 to 35 GHz (Hyde, et al., J. Phys. Chem. B 108 (2004) 9524-9529). The T?s measured at W-band (94 GHz) for the water-soluble spin-labels CTPO and TEMPONE (Froncisz, et al., J. Magn. Reson. 193 (2008) 297-304) are, however, shorter than when measured at Q-band (35 GHz). In this paper, the decreasing trends at W-band have been confirmed for commonly used lipid-type spin-labels in model membranes. It is concluded that the longest values of T? will generally be found at Q-band, noting that long values are advantageous for measurement of bimolecular collisions with oxygen. The contribution of dissolved molecular oxygen to the relaxation rate was found to be independent of microwave frequency up to 94 GHz for lipid-type spin-labels in membranes. This contribution is expressed in terms of the oxygen transport parameter W=T??1(Air)-T??1(N?), which is a function of both concentration and translational diffusion of oxygen in the local environment of a spin-label. The new capabilities in measurement of the oxygen transport parameter using saturation-recovery (SR) EPR at Q- and W-band have been demonstrated in saturated (DMPC) and unsaturated (POPC) lipid bilayer membranes with the use of stearic acid (n-SASL) and phosphatidylcholine (n-PC) spin-labels, and compared with results obtained earlier at X-band. SR EPR spin-label oximetry at Q- and W-band has the potential to be a powerful tool for studying samples of small volume, ~30 nL. These benefits, together with other factors such as a higher resonator efficiency parameter and a new technique for canceling free induction decay signals, are discussed.  相似文献   

3.
There are no easily obtainable EPR spectral parameters for lipid spin labels that describe profiles of membrane fluidity. The order parameter, which is most often used as a measure of membrane fluidity, describes the amplitude of wobbling motion of alkyl chains relative to the membrane normal and does not contain explicitly time or velocity. Thus, this parameter can be considered as nondynamic. The spin-lattice relaxation rate () obtained from saturation-recovery EPR measurements of lipid spin labels in deoxygenated samples depends primarily on the rotational correlation time of the nitroxide moiety within the lipid bilayer. Thus, can be used as a convenient quantitative measure of membrane fluidity that reflects local membrane dynamics. profiles obtained for 1-palmitoyl-2-(n-doxylstearoyl)phosphatidylcholine (n-PC) spin labels in dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol are presented in parallel with profiles of the rotational diffusion coefficient, R, obtained from simulation of EPR spectra using Freed’s model. These profiles are compared with profiles of the order parameter obtained directly from EPR spectra and with profiles of the order parameter obtained from simulation of EPR spectra. It is shown that and R profiles reveal changes in membrane fluidity that depend on the motional properties of the lipid alkyl chain. We find that cholesterol has a rigidifying effect only to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. These effects cannot be differentiated by profiles of the order parameter. All profiles in this study were obtained at X-band (9.5 GHz).  相似文献   

4.
Stable L-alanine radicals, SAR1 and SAR2, induced by γ-irradiation of the L-alanine crystal have been investigated by electron paramagnetic resonance (EPR) technique at W-band (94 GHz) frequency. The study provides assignment of radical centers detected by continuous-wave EPR, saturation transfer mode and echo-detected field-swept EPR at W-band frequencies. The phase memory time, T m, which was measured simultaneously at X-band (9.5 GHz) and W-band frequencies for different spectral components has been employed to estimate rotation correlation times of CH3 protons and an effective correlation time related to the local dynamics of the entire SAR1 center at room temperature.  相似文献   

5.
In this paper, we report our initial results on studying magnetically aligned phospholipid bilayers (bicelles) at high magnetic fields (approximately 3.4 T) with electron paramagnetic resonance (EPR) spectroscopy at 95 GHz (W-band). In order to characterize this system for W-band EPR studies, we have utilized the nitroxide spin probe 3beta-doxyl-5alpha-cholestane to demonstrate the effects of macroscopic bilayer alignment. At W-band due to the increase in magnetic field strength (when compared to X-band studies at 9.5 GHz) (S. M. Garber et al., J. Am. Chem. Soc. 121, 3240-3241 (1999)), we were able to examine magnetically aligned phospholipid bilayers at two orientations with the bilayer normal oriented either perpendicular or parallel (upon addition of YbCl3) with respect to the direction of the static magnetic field. Additionally, at a magnetic field of 3.4 T (g=2 resonance at W-band), we were able to study the parallel alignment with a lower concentration of Yb3+, thereby eliminating the possible unwanted effects associated with lanthanide-protein interactions and paramagnetic shifts and/or line broadening induced by the lanthanide ions. The development of this new spin label alignment technique will open up a whole new area of investigation for phospholipid bilayer systems and membrane protein EPR studies at high magnetic fields.  相似文献   

6.
Stochastic excitation with a full-width-half-maximum bandwidth of 250 MHz was used to perform Fourier-transform (FT) high-field/high-frequency electron paramagnetic resonance (EPR) at 3.4T/95 GHz (W-band). Thereby, the required microwave peak power is reduced by a factor of tau(p)/T1 as compared to equivalent pulsed FT EPR in which the spin system with spin-lattice relaxation time T1 is excited by a single microwave pulse of length tau(p). Stochastic EPR is particularly interesting under high-field/high-frequency conditions, because the limited output power of mm microwave sources, amplifiers, and mixers makes pulse FT EPR in that frequency domain impossible, at least for the near future. On the other hand, FT spectroscopy offers several advantages compared to field-swept magnetic resonance methods, as is demonstrated by its success in NMR and X-band EPR. In this paper we describe a novel stochastic W-band microwave bridge including a bimodal induction mode transmission resonator that serves for decoupling the microwave excitation and signal detection. We report first EPR measurements and discuss experimental difficulties as well as achieved sensitivity. Moreover, we discuss future improvements and the possibility for an application of stochastic W-band FT EPR to transient signals such as those of photoexcited radical pairs in photosynthetic reaction centers.  相似文献   

7.
Polymer-derived SiCN ceramics, annealed (also referred to as pyrolyzed) at 1000, 1100, and 1285 °C, and doped with Fe(III) acetylacetonate, are investigated by electron paramagnetic resonance (EPR) from 4 to 120 K at X-band (9.425 GHz). In addition, the SiCN ceramic, annealed at 1100 °C, was studied by EPR at 300 K at W-band (93.96 GHz). There was observed a significant increase in EPR linewidth due to dangling bonds (g = 2.001) below 20 K at X-band. The low-field X-band FMR line (g ≈ 12) indicated the presence of ferromagnetic Fe5Si3 crystallites. There were found two EPR lines due to carbon-related dangling bonds: (1) those present as defects on the surface of the free-carbon phase (as sp2 carbon-related dangling bonds with g = 2.0011) and (2) those present within the bulk of carbon phase (as sp3 carbon-related dangling bonds with g = 2.0033). On the other hand, the intense low-field EPR signal observed at X-band was not observed at W-band. As well, there was observed splitting of the single broad EPR signal observed at g = 2.05 at X-band into two signals at W-band at g = 1.99 and g = 2.06, due to two different Fe-containing superparamagnetic nanocrystallites. Two new EPR signals, not observed at X-band, were observed at W-band, namely at g = 2.28 and g = 3.00, which are also due to g of these superparamagnetic nanocrystallites.  相似文献   

8.
The presence of integral membrane proteins induces the formation of distinct domains in the lipid bilayer portion of biological membranes. Qualitative application of both continuous wave (CW) and saturation recovery (SR) electron paramagnetic resonance (EPR) spin-labeling methods allowed discrimination of the bulk, boundary, and trapped lipid domains. A recently developed method, which is based on the CW EPR spectra of phospholipid (PL) and cholesterol (Chol) analog spin labels, allows evaluation of the relative amount of PLs (% of total PLs) in the boundary plus trapped lipid domain and the relative amount of Chol (% of total Chol) in the trapped lipid domain (Raguz et al. Exp Eye Res 140:179–186, 24). Here, a new method is presented that, based on SR EPR spin-labeling, allows quantitative evaluation of the relative amounts of PLs and Chol in the trapped lipid domain of intact membranes. This new method complements the existing one, allowing acquisition of more detailed information about the distribution of lipids between domains in intact membranes. The methodological transition of the SR EPR spin-labeling approach from qualitative to quantitative is demonstrated. The abilities of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses. Statistical analysis (Student’s t test) of the data allowed determination of the separations of mean values above which differences can be treated as statistically significant (P ≤ 0.05) and can be attributed to sources other than preparation/technique.  相似文献   

9.
A reference arm W-band (94 GHz) microwave bridge with two sample-irradiation arms for saturation recovery (SR) EPR and ELDOR experiments is described. Frequencies in each arm are derived from 2 GHz synthesizers that have a common time-base and are translated to 94 GHz in steps of 33 and 59 GHz. Intended applications are to nitroxide radical spin labels and spin probes in the liquid phase. An enabling technology is the use of a W-band loop-gap resonator (LGR) [J.W. Sidabras, R.R. Mett, W. Froncisz, T.G. Camenisch, J.R. Anderson, J.S. Hyde, Multipurpose EPR loop-gap resonator and cylindrical TE011 cavity for aqueous samples at 94 GHz, Rev. Sci. Instrum. 78 (2007) 034701]. The high efficiency parameter (8.2 GW−1/2 with sample) permits the saturating pump pulse level to be just 5 mW or less. Applications of SR EPR and ELDOR to the hydrophilic spin labels 3-carbamoyl-2,2,5,5-tetra-methyl-3-pyrroline-1-yloxyl (CTPO) and 2,2,6,6,-tetramethyl-4-piperidone-1-oxyl (TEMPONE) are described in detail. In the SR ELDOR experiment, nitrogen nuclear relaxation as well as Heisenberg exchange transfer saturation from pumped to observed hyperfine transitions. SR ELDOR was found to be an essential method for measurements of saturation transfer rates for small molecules such as TEMPONE. Free induction decay (FID) signals for small nitroxides at W-band are also reported. Results are compared with multifrequency measurements of T1e previously reported for these molecules in the range of 2–35 GHz [J.S. Hyde, J.-J. Yin, W.K. Subczynski, T.G. Camenisch, J.J. Ratke, W. Froncisz, Spin label EPR T1 values using saturation recovery from 2 to 35 GHz. J. Phys. Chem. B 108 (2004) 9524–9529]. The values of T1e decrease at 94 GHz relative to values at 35 GHz.  相似文献   

10.
Loop-gap resonator (LGR) technology has been extended to W-band (94GHz). One output of a multiarm Q-band (35GHz) EPR bridge was translated to W-band for sample irradiation by mixing with 59 GHz; similarly, the EPR signal was translated back to Q-band for detection. A cavity resonant in the cylindrical TE011 mode suitable for use with 100 kHz field modulation has also been developed. Results using microwave frequency modulation (FM) at 50 kHz as an alternative to magnetic field modulation are described. FM was accomplished by modulating a varactor coupled to the 59 GHz oscillator. A spin-label study of sensitivity was performed under conditions of overmodulation and gamma2H1(2)T1T2<1. EPR spectra were obtained, both absorption and dispersion, by lock-in detection at the fundamental modulation frequency (50 kHz), and also at the second and third harmonics (100 and 150 kHz). Source noise was deleterious in first harmonic spectra, but was very low in second and third harmonic spectra. First harmonic microwave FM was transferred to microwave modulation at second and third harmonics by the spins, thus satisfying the "transfer of modulation" principle. The loaded Q-value of the LGR with sample was 90 (i.e., a bandwidth between 3 dB points of about 1 GHz), the resonator efficiency parameter was calculated to be 9.3 G at one W incident power, and the frequency deviation was 11.3 MHz p-p, which is equivalent to a field modulation amplitude of 4 G. W-band EPR using an LGR is a favorable configuration for microwave FM experiments.  相似文献   

11.
A simple setup for rapid freeze-quench electron paramagnetic resonance (EPR) at W-band is described. It is based on a BioLogic commercial apparatus and a modified sample collection appropriate for W-band capillaries. The standard reaction of myoglobin with azide, which converts high-spin Fe(III) to low-spin Fe(III), used for calibration of rapid freeze-quench X-band EPR is very inconvenient for high-field measurements. Here we propose a different simple calibration reaction for W-band: the reduction of a nitroxide free radical with sodium dithionite using Mn2+ as an internal standard. Using this calibration reaction we determined the dead time of our system to be less than 10 ms.  相似文献   

12.
A new variant of lipoxygenases, one containing manganese instead of iron, is characterized by electron paramagnetic resonance (EPR) at two frequencies. In the manganous state (S(e) = 5/2), maganese lipoxygenase (MnLO) yields very broad X-band (9.2 GHz) EPR signals, extending over about 800 mT. In contrast, at W-band (94 GHz), the signal is much simplified, consisting of nested transitions centered near the free electron g-value. Computer simulation has been employed to derive estimates of the zero-field splittings for MnLO, with data from these two EPR frequencies. The general features of both X- and W-band spectra are fit, first, by simulations with S(e) = 5/2, but no nuclear hyperfine splitting. The simulations are then refined by inclusion of the hyperfine splitting. On the basis of the simulations, the ranges of zero-field splitting parameters are D = +0.07 to +0.10 cm(-1), and E/D = 0.13 to 0.23. Comparison of the value of D for MnLO with that of other manganese-containing proteins suggests that MnLO has three N-ligands to the metal center and O-ligands in the remainder of 6 coordination positions. The coordination environment of MnLO is similar to that in iron lipoxygenases.  相似文献   

13.
Hyperfine couplings and g-values of nitroxyl spin labels are sensitive to polarity and hydrogen bonding in the environment probed. The dependences of these electronic paramagnetic resonance (EPR) properties on environmental dielectric permittivity and proticity are reviewed. Calibrations are given, in terms of the Block–Walker reaction field and local proton donor concentration, for the nitroxides that are commonly used in spin labeling of lipids and proteins. Applications to studies of the transverse polarity profiles in lipid bilayers, which constitute the permeability barrier of biological membranes, are reviewed. Emphasis is given to parallels with the permeation profiles of oxygen and nitric oxide that are determined from spin-label relaxation enhancements by using nonlinear continuous-wave EPR and saturation recovery EPR, and with permeation profiles of D2O that are determined by using 2H electron spin echo envelope modulation spectroscopy.  相似文献   

14.
The high-field (i.e., 94 GHz) membrane EPR spectra of lipids spin labeled in their fatty acid chains have been simulated by using two limiting motional models. The aim was to identify the dynamic origin of the residual (g(xx) - g(yy)) anisotropy observed in the nonaxial EPR spectra of cholesterol-containing membranes. It is concluded that the residual spectral anisotropy arises from in-plane ordering of the lipid chains by cholesterol. The partial averaging of the (g(xx) - g(yy)) anisotropy was best described by restricted axial rotation with a frequency in the region of tau(-1)(R||) approximately 0.5-1 x 10(9) s(-1). Simulations for slower axial rotation of unrestricted amplitude produced less satisfactory fits. In phospholipid membranes not containing cholesterol, the nonaxial anisotropy is completely averaged in the fluid phase and substantially reduced even in the gel phase. The unrestricted axial rotation in the gel phase is of comparable frequency to that of the limited axial rotation in the liquid-ordered phase of membranes containing cholesterol. These results on in-plane ordering by cholesterol in the liquid-ordered phase could be significant for current proposals regarding domain formation in cellular membranes.  相似文献   

15.
Marine diesel was studied by electron paramagnetic resonance (EPR) spectroscopy at X-(9 GHz) and W-bands (94 GHz). The experiments were performed at room temperature (about 300 K). X-band spectra exhibited isotropy, resolved lines and negligible noise, whereas the W-band spectra exhibited a poorer signal-to-noise ratio and anisotropy in g and in hyperfine interactions. Viscosity at room temperature (2.5 · 10−3 kg/m · s) and the tumbling correlation time for free radicals (about 10−7 s) justified the high mobility of free radicals in marine diesel and consequently, the septet-quartet EPR spectrum of organic radicals with parameters g = 2.0028 ± 0.0005, proton hyperfine couplings A = 6.31 ± 0.01 G (septet) and A′ = 1.80 ± 0.01 G (quartet) at X-band. The perinaphthenyl radicals are probably responsible for the septet-quartet EPR spectrum of this oil by-product. Authors' address: Eduardo Di Mauro, Laboratório de Fluorescência e Ressonancia Paramagnética Eletr?nica, Centro de Ciências Exatas, Universidade Estadual de Londrina, C.P. 6014, CEP 86051-970 Londrina, Paraná, Brasil  相似文献   

16.
Initial and laser-irradiated poly(bis-alkylthioacetylene) (PATAC) samples were investigated by electron paramagnetic resonance (EPR) at X-band (9.6 GHz), Q-band (37 GHz), and D-band (140 GHz) in a wide temperature range. Two types of paramagnetic centers were proved to exist in laser-modified polymer, namely, localized and mobile polarons with the concentration ratio and susceptibility depending on the irradiation dose and temperature. Superslow torsion motion of the polymer chains was studied by the saturation transfer method at D-band EPR. Additional information on the polymer chain segment dynamics was obtained by the spin probe method at X-band EPR. Spin-spin and spin-lattice relaxation times were measured separately by the steady-state saturation method at D-band EPR. Intrachain and interchain spin diffusion coefficients and conductivity arising from the polaron dynamics were calculated. It was shown that the polaron dynamics in laser-modified polymer is affected by the spin-spin interaction. The interchain charge transfer is stimulated by torsion motion of the polymer chains, whereas the total conductivity of irradiated PATAC is determined mainly by the dynamic of diamagnetic charge carriers. Magnetic, relaxation and dynamics parameters of PATAC were also shown to change during polymer storage.  相似文献   

17.
The influence of C60 aggregation on time-resolved (TR) electron paramagnetic resonance (EPR) of C60 in the excited triplet state was investigated by multifrequency EPR techniques. Temperature-independent X-band (9.7 GHz) TR-EPR spectra were observed in a fresh toluene solution, while temperature-dependent ones were reported in literatures. The experimental spectra in this study indicated that the pseudorotation of pristine C60 in frozen toluene solution is not frozen out even at lower temperatures. Careful investigations of TR-EPR and its decay kinetics demonstrated that the pseudorotation can be affected by C60 aggregation. A comparison between X- and W-band (94.9 GHz) results indicated that the aggregation can be accelerated by a capillary effect. Three decay constants were extracted from the analysis of the decay kinetics. The fastest component was ascribed to the pseudorotation, which was independent of temperature in the range of 10–40 K. The temperature dependences of the decay kinetics showed that the pseudorotation is not affected by C60 aggregation at higher temperatures.  相似文献   

18.
Petroleum of Arabian and Colombian origin was studied by electron paramagnetic resonance (EPR) spectroscopy at X- (9 GHz), Q- (34 GHz) and W-bands (94 GHz). The experiments were performed at room temperature (about 300 K) and at 77 K (W-band only). The asymmetry in the lines corresponding to free radicals was observed more intensely in the W-band spectra. The values of the line width ΔH in the spectra increased linearly with the microwave frequency utilized in the EPR experiments. A mathematical simulation of the free radical signal for the EPR spectra in three bands with a set of parameters corresponding to a single species was attempted, but this was not exactly coincident with the experimental signals, suggesting that the hyperfine interaction of the unpaired electron with its neighborhood corresponds to more than one species of radical in the molecular structure of the petroleum asphaltene.  相似文献   

19.
Electron paramagnetic resonance (EPR) spectroscopy of spin-labeled lipids in complex with the sphingolipid activator proteins, GM2AP and SapB, was utilized to characterize the hydrophobic binding pocket of these lipid transfer proteins. Specifically, the EPR line shapes reveal that the mobility of the labeled lipids within the binding pockets of the transfer proteins are more restricted than when in a lipid bilayer environment and that lipids in GM2AP are slightly more restricted than in SapB. EPR accessibility based relaxation measurements show that the relative ratios of oxygen and water accessibility to sites along the acyl chains in lipids in complex with GM2AP are similar to the profiles obtained for a lipid bilayer albeit with lowered values. The results for SapB are quite different, with the oxygen profile mimicking a lipid bilayer, but there is a higher degree of water accessibility to the acyl chains in the SapB complex, likely because of the location of the lipid at the dimer interface in SapB coupled to dynamics of the dimer.  相似文献   

20.
Spin-correlated radical pairs are the short-lived intermediates of the primary energy conversion steps of photosynthesis. In this paper, we develop a comprehensive model for the spin-polarized electron paramagnetic resonance (EPR) spectra of these systems. Particular emphasis is given to a proper treatment of the alignment of the photosynthetic bacteria by the field of the EPR spectormeter. The model is employed to analyze time-resolved W-band (94 GHz) EPR spectra of the secondary radical pair P 700 + A 1 ? in photosystem I formed by photoexcitation of the deuterated and15N-substituted cyanobacteriumSynechococcus lividus. Computer simulations of the angular-dependent EPR spectra of P700/+A1/? provide values for the order parameter of the cyanobacterial cells and for the orientation of the membrane normal in a molecular reference system. The order parameter from EPR compares favorably with corresponding data from electron microscopy obtained for theS. lividus cells under similar experimental conditions. It is shown that high-field EPR of a magnetically aligned sample in combination with the study of quantum beat oscillations represents a powerful structural tool for the short-lived radical pair intermediates of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号