首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The photophysics and electronic structure of tribenzotetraazachlorins (H2, Zn, and Mg), which are novel analogues of phtalocyanines, have been studied experimentally and theoretically. At 293 K, the electronic absorption, fluorescence, and fluorescence excitation spectra are recorded and the fluorescence quantum yield and lifetime, as well as the quantum yield of singlet oxygen generation, are measured; at 77 K, the fluorescence, fluorescence excitation, and fluorescence polarization spectra are recorded and the fluorescence lifetime values are measured. The dependences of the absorption spectra and photophysical parameters on the structure variation are analyzed in detail. Quantum-chemical calculations of the electronic structure and absorption spectra of tribenzotetraazachlorins (H2, Mg) are performed using the INDO/Sm method (modified INDO/S method) based on molecular-geometry optimization by the DFT PBE/TZVP method. The results of quantum-chemical calculations of the electronic absorption spectra are in very good agreement with the experimental data for the transitions to two lower electronic states.  相似文献   

2.
The geometry, electronic structure, polarizability and hyperpolarizability of organic dye sensitizer TA-St-CA, which contains a π-conjugated oligo-phenylenevinylene unit with an electron donor–acceptor moiety, was studied using density functional theory (DFT), and the electronic absorption spectrum was investigated via time-dependent DFT (TD-DFT) with several hybrid functionals. The calculated geometry indicates that the strong conjugated effects are formed in the dye. The TD-DFT results show that the hybrid functional PBE1PBE and MPW1PW91 are more suitable than B3LYP for calculating electronic absorption spectra. The features of electronic absorption spectra were assigned on account of the qualitative agreement between the experiment and the calculations. The absorption bands in visible and near-UV region are related to photoinduced electron transfer processes, and the diphenylaniline group is major chromophore that contributed to the sensitization, and the interfacial electron transfer are electron injection processes from the excited dyes to the semiconductor conduction band. Compared with the similar dye D5, the good performance of TA-St-CA in dye-sensitized solar cells may be resulted from the higher energy level of the lowest unoccupied molecular orbital and the larger oscillator strengths for the most excited states with intramolecular electron transfer character.  相似文献   

3.
The effects of substituents on the electronic structures of di(thienylene vinylene) (2TV) in ground and excited states are studied using density functional theory (DFT) and time‐dependent DFT (TD‐DFT), respectively. A representative set of electron donating groups (amino, methoxy and methyl) and withdrawing groups (acetylene, cyano and nitro) are introduced on the vinylene and thienyl moieties to investigate the influence of substituents. Bulk solvent effects are also taken into account by means of the polarizable continuum model (PCM). In contrast to the aromatic structures of 2TV and its derivatives in their ground (S0) states, the electronic structures of first singlet excited (S1) states are rather delocalized. The electron‐donating/withdrawing capability, position and number of substituents are important factors in tuning the vertical S0 → S1 absorption energies and S1 → S0 emission energies of 2TV derivatives. The NO2‐ and NH2‐substituents exert significant effects on the geometries of both ground and excited states and hence the absorption and photoluminescence (PL) emission spectra. The solvent polarity introduces modest influence on the excitation energies for most of the 2TV derivatives. But the absorption and PL emission spectra of nitro‐substituted 2TV exhibit noticeable red shifts as the medium polarity increases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Particular features of the geometrical and electronic structure of six possible conformers of dansylamide ((CH3)2N–C10H6–SO2NH2) are considered. The electronic absorption spectra of the conformers of dansylamide in the free state and taking into account the influence of an aqueous solvent (in terms of the PCM model) are calculated by the TDDFT method. It is shown that, as a result of taking into account solvation, the electronic absorption spectra of the conformers exhibit a bathochromic shift, and the difference in the values of λ of the conformers reaches 16 nm. The calculated electronic absorption spectra in an aqueous medium agree qualitatively with the obtained experimental spectra. An analysis of molecular orbitals involved in the first three electronic transitions of the conformers is carried out. It is suggested that the broadening of the band with λmax = 326 nm in the experimental spectrum may be caused by the presence of dansylamide conformers in the aqueous solution. It is shown that the calculated values of λ in the electronic absorption spectra of dansylamide in the aqueous solvent depend substantially on the DFT functional type.  相似文献   

5.
Detailed ab initio studies on the electronic structure and optical properties of crystalline strontium azide and barium azide have been performed using density functional theory (DFT) within the generalized gradient approximation (GGA). Relaxed crystal structures compare well with experimental data. An analysis of electronic structure, charge transfer, and bond order shows that the two azides are mainly ionic compounds. Our calculated optical properties are found to be in good agreement with available experimental data. The absorption spectra of the two azides show a number of absorption peaks in the fundamental absorption region. The photoconductivity spectra display a broad photocurrent response in the fundamental absorption region. The density of states of the two azides reveal the effects of the metal states on the valence electron of the azide group, and so are correlated with their thermal decomposition.  相似文献   

6.
用密度泛函理论,对系列钌多吡啶配合物1-3的电子结构、DNA光裂解及光谱性质进行了研究。首先,计算了配合物1-3的氧化还原电势,根据配合物1-3激发态还原电势的大小,合理地解释了配合物1-3的DNA光裂解能力。其次,根据配合物1-3的电子结构性质,设计了具有较高激发态还原电势的配合物4,从理论上预测配合物4具有较强的光裂解能力。最后,用TDDFT方法,在水溶液中对配合物1-3的电子吸收光谱进行了计算和模拟,计算得到的电子吸收光谱和实验结果吻合较好,实验上测得的较强吸收带从理论上被详细地解释,并研究了配合物的主配体对电子吸收光谱性质的影响。  相似文献   

7.
用密度泛函理论的杂化密度泛函B3LYP方法研究了太阳能电池光敏荆5,10,15.三苯基-20-(3,4-二羟基苯)卟啉(卟啉儿荼酚,TPP-cat)的几何结构、电子结构、IR和Raman特性.用自然键轨道方法分析了电荷布居和成键性质.计算结果表明,最强的IR吸收峰位于1175.81 cm-1处,最强的Raman活性位于1587.18 cm-1处.采用含时密度泛函计算了TPP-cat在水溶液中的电子吸收谱,其Soret带和Q带均指认为π→π*跃迁,在大约354 cm-1处的跃迁与一个光诱导分子内电荷转移过程有关.  相似文献   

8.
We report a combined experimental and computational study of the effect of electron donor and acceptor groups on the excited state intramolecular proton transfer of 2-(2′-hydroxyphenyl) imidazole derivatives in solvents of different polarities. The changes in fluorescence properties, electronic transitions and energy levels are analyzed and discussed. The study was complemented using the Density Functional Theory (DFT)-Time Dependent DFT [B3LYP/6-31G(d)] computations. The calculated absorption and emission spectra of the imidazole derivatives are in good agreement with the experiments, thus allowing an assignment of the UV–vis spectra.  相似文献   

9.
徐国亮  袁伟  耿振铎  刘培  张琳  张现周  刘玉芳 《物理学报》2013,62(7):73104-073104
蒽(anthracene)具有良好的热稳定性以及较高的荧光量子产率的优点, 是最早用于研究有机发光器件(organic light-emitting device, OLED)的材料之一. 在本文中, 主要利用量子化学方法研究了不同外电场对蒽分子激发特性的影响规律. 首先采用密度泛函理论(density functional theory, DFT)在6-311G(d, p)基组水平上对蒽分子基态结构进行优化, 基于稳定基态结构, 利用含时密度泛函(time-dependent density functional theory, TDDFT)以及同一基组水平, 计算出蒽分子的前十个激发态的激发能、跃迁偶极矩、振子强度和紫外吸收光谱等数据. 然后以密度泛函B3P86方法优化出的不同外电场下蒽分子基态结构为基础, 使用TDDFT方法研究了不同外电场对蒽分子前线轨道能级和激发特性的影响规律. 结果显示, 无场时蒽分子在紫外区域234.50 nm处有一个较强的吸收峰, 对应基态电子跃迁至第5激发态吸收光子波长; 在外电场作用下, 蒽分子电子由基态跃迁到激发态的各项光谱参数均有显著变化, 加场后蒽分子的吸收光谱发生了红移, 由紫外波段移向了紫外–可见光波段, 与实验值相符合. 分子前线轨道的计算结果也表明蒽分子的最高占据轨道(highest occupied molecular orbital, HOMO)和最低未占据轨道(lowest unoccupied molecular orbital, LUMO)能量差值在不同电场下存在差异. 关键词: 蒽 外电场 激发特性  相似文献   

10.
对二甲苯(PX)是化工领域一种非常重要的原料,被广泛地用于香料、医药、油墨和农药等的生产,因此研究PX分子的电子光谱和外场效应,对于它的检测和降解具有十分重要的意义。为研究外电场作用下,PX分子的紫外-可见(UV-Vis)光谱的变化,采用密度泛函理论(density functional theory,DFT)B3LYP方法在6-311++G(d, p)基组水平上,优化了不同外电场(0~0.025 a.u.,0~1.285 6×1010 V·m-1)作用下PX分子的基态几何构型,在此基础上利用含时密度泛函理论(TDDFT)计算了PX分子的UV-Vis吸收光谱,最后对PX分子紫外吸收峰和摩尔吸收系数受外电场作用的的影响规律进行了研究。结果表明:有波长为189 nm、摩尔吸收系数为35 580 L·mol-1·cm-1的强吸收峰,处于E1带,它是环状共轭的三个乙烯键的苯型体系中的π→π*电子跃迁产生的;与苯分子相比,吸收峰出现11 nm的红移:由于两个甲基和苯环形成p-π共轭,苯环的大π键变弱,故PX分子的紫外吸收峰出现红移;当增加了外电场后,最低未占据轨道(LUMO)向外电场的反方向偏移,导致苯环上的电子密度减小,大π键变弱,π→π*跃迁需要的能量降低,电子跃迁产生的波长增大,吸收峰出现显著红移,当外电场增大到0.020 a.u.时,红移已经非常明显;外电场的引入,导致苯环上的电子密度减小,大π键变弱,π→π*跃迁的电子数减少,摩尔吸收系数降低,随着外电场的增强,摩尔吸收系数降低明显,尤其在外电场增强到0.020a.u.后,摩尔吸收系数降低非常显著。这些工作为PX的检测和降解方法研究提供了一定的理论依据,也对其他有机污染物的检测方法和降解机理的研究有启示作用。  相似文献   

11.
四氨基钴酞菁紫外-可见光谱量子化学研究   总被引:2,自引:0,他引:2  
四氨基钴酞菁是一种很有前途的可见光催化剂,为丰富和完整该物质结构性质及反应活性的理论体系,尤其是其光谱性质的量子化学研究,利用量子化学计算模拟和实验研究相结合的方式对四氨基钴酞菁的紫外-可见光谱进行了比对研究。通过实验证明,四氨基钴酞菁的二甲基甲酰胺(DMF)溶液在324.98和709.94 nm处出现两个明显的吸收峰。在密度泛函法的B3LYP/3-21G*水平上,采用含时密度泛函(time-dependent density functional theory,TD-DFT)方法模拟四氨基钴酞菁的紫外-可见吸收光谱显示,得到了两个吸收谱带分别在321.41和709.92 nm处,与实验值基本吻合,证明密度泛函理论在四氨基钴酞菁的量子化学理论研究是有效可靠的。通过量子计算还确定了每个吸收峰中各个电子跃迁的贡献率:在326.22 nm处的吸收主要是电子从轨道152到163 LUMO的跃迁;在314.42 nm处的吸收主要是电子从轨道149到164 LUMO+1的跃迁;在747.57 nm处的吸收主要是电子从轨道162 HOMO到163 LUMO的跃迁;在676.01 nm处的吸收主要是电子从轨道162 HOMO到164 LUMO+1的跃迁。这些模拟数据对实验研究提供了极大的理论补充,四氨基钴酞菁的紫外-可见光谱量子化学研究对后续实验指导及应用有十分重要的理论意义。  相似文献   

12.
用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)对聚合度为2-7的线型反式聚噻咯(1a-6a)与顺式聚噻咯(1b-6b)的电子结构和吸收光谱进行了比较计算。在获得基态稳定构型的基础上,进行了自然键轨道(NBO)分析,随后计算了各体系的电子吸收光谱。结果发现,随着聚合度的增大,顺式和反式聚噻咯的结构稳定性均增强,最大吸收波长均发生红移,并且顺式结构红移更明显。此研究为聚噻咯应用在空穴传输材料、导电材料、发光二极管等发光材料领域提供了理论依据。  相似文献   

13.
运用密度泛函(DFT)和含时密度泛函(TD DFT)理论方法研究了在2-(2-羟基苯基)苯并噻唑(HBT)苯环羟基的邻位或对位分别引入羟基和醛基后的衍生物分子内质子转移过程,考察了取代基的电子效应及取代位置对分子内氢键和质子转移反应的影响,模拟计算了各分子的IR振动光谱和电子光谱.研究发现,HBT及其衍生物分子可以形成分子内氢键,且激发态时氢键增强.基态时以醇式构型稳定存在,激发态时酮式结构为优势构象.分子的最大吸收峰和发射峰主要源于电子从前线分子轨道HOMO到LUMO之间的跃迁.基态分子内质子转移需要越过较高的能垒因而难以发生,而激发态时只需越过较低能垒就很容易发生激发态分子内质子转移.取代基的电子效应和取代位置对HBT分子氢键强度、互变异构体的相对稳定性、电子光谱及质子转移反应的能垒均有一定影响.  相似文献   

14.
采用DFT/B3LYP方法对3种母环氨基修饰的罗丹明类衍生物的结构进行了全优化,得到此3种化合物的基态和激发态的结构参数、振动光谱、前线分子轨道能量等相关数据,并在基态和激发态几何构型优化的基础上,用TD-DFT方法计算了其气相吸收光谱及发射光谱,全面分析了结构特征对热稳定性、前线分子轨道及光谱性质的影响。结果表明:化合物a末端氨基的扭转运动程度最低,化合物b相对于化合物a,分子共轭及平面程度提高,末端氨基的扭转运动程度增大,气相最大吸收波长及最大发射波长红移,且计算分子中最大发射波长最长,热稳定性最低。化合物c在计算分子中共轭及平面程度、热稳定性、HOMO能量最高,能隙最低,气相最大吸收波长最长。但相对于化合物b末端氨基的扭转运动程度增大,最大发射波长蓝移。  相似文献   

15.
We report the electronic structure of monoclinic CuO as obtained from first principles calculations utilizing density functional theory plus effective Coulomb interaction (DFT + U) method. In contrast to standard DFT calculations taking into account electronic correlations in DFT + U gave antiferromagnetic insulator with energy gap and magnetic moment values in good agreement with experimental data. The electronic states around the Fermi level are formed by partially filled Cu 3d x²?y² orbitals with significant admixture of O 2p states. Theoretical spectra are calculated using DFT + U electronic structure method and their comparison with experimental photoemission and optical spectra show very good agreement.  相似文献   

16.
The geometrical/electronic structures, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy of two especially C74 fullerenes (D3h–C74 and C1–C74) and the chlorinated species C1–C74Cl10, which are newly isolated in the experiment, have been calculated by means of the density functional theory (DFT) method. Effective changes in the electronic structure and simulated X-ray spectra have been observed after chlorination. Strong isomer dependence has been found in both spectra, thus the ‘fingerprints’ in the spectra can be employed as a tool to identify the isomers. The ultraviolet-visible (UV-vis) absorption spectrum of C1–C74Cl10 has been performed by using the time-dependent DFT method. The generated UV-vis spectrum coincides with the previous experimental counterpart. The results of this work can provide useful information especially for isomer identification and further study on fullerenes by means of the aforementioned spectroscopy techniques.  相似文献   

17.
The geometries, electronic structures, polarizabilities, and hyperpolarizabilities of organic dye sensitizer 4-Aminophthalonitrile were studied based on Hartee-Fock (HF) and Density Functional Theory (DFT) using the hybrid functional B3LYP. Ultraviolet-visible (UV-Vis) spectrum was investigated by Time Dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the visible and near-UV regions were assigned based on TD-DFT calculations. The absorption bands have been assigned to nπ* transitions. Calculated results suggest that the three excited states with the lowest excited energies in 4-Aminophthalonitrile is due to photoinduced electron transfer processes. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer is due to an electron injection process from excited dye to the semiconductor’s conduction band. The role of cyanide and amine group in 4-Aminophthalonitrile geometries, electronic structures, and vibrational spectra were compared with experimental values and in view of these results, it was concluded that 4-Aminophthalonitrile used in Dye Sensitized Solar Cells (DSSC) gives a good conversion efficiency.  相似文献   

18.
Symmetric‐type carbazole derivatives show great potential for application in two‐photon absorption (TPA) materials and organic light‐emitting diodes. The absorption spectra and fluorescence emission spectra of three different N‐alkyl symmetric‐type carbazole derivatives were investigated. The density functional theory (DFT) time‐dependent‐DFT//Becke, three‐parameter, Lee–Yang–Parr/6‐31 G* method has been used to theoretically study one‐photon absorption properties. The computational results are in good agreement with the available experimental values. The two‐photon excited fluorescence of the compounds was surveyed by 120 fs pulse at 790 nm Ti: sapphire laser operating at 1 kHz repetition rate. Two‐photon excited fluorescence was obtained in the range of 380–600 nm, and TPA cross‐sections were calculated. The TPA properties of the series of compounds were investigated by the ZINDO/single and double electronic excitation configuration interaction method. The influence of the chemical structure of the compounds on two‐photon optical properties was discussed. The results show how the different changes in one‐photon absorption and TPA properties on the basis of lengthening the conjugated bridge and the different carbazole N‐alkyl substituents are attributed to the transition dipole moment in the excited process. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, we studied influences on the absorption and fluorescence emission spectra of coumarin-4066 (C-466) with different solvent polarity scale. The spectral shifts reflect the effect of the equilibrium solvents association across the energized solute particle, which adjusts inertially as a result of quick charge realignment upon radiative deactivation to the lowest electronic state. The dipole moments of C-466 are determined by employing the Bakhshiev, Kawski-Chamma-Viallet, Lippert-Mataga and McRae relations. The results from all these methods are, excited state dipole moment of C-466 is higher than the ground state dipole moments and which indicates molecule is less polar in the ground state. Theoretical analysis was also carried out by Density Functional theory (DFT and TD –DFT) employing the BECKE-1998 (exchange)/STO-6G basic set in ethanol solvent and in vacuum medium. The HOMO-LUMO, Solvent Accessible Surfaces (SAS) and Molecular Electrostatic Potential (MEP) were analysed to acquire additional knowledge of the molecular arrangement and electronic properties of C-466. These photophysical properties suggest delineation can be mauled for laying out new luminescent tests for various solvents microenvironment.  相似文献   

20.
We present a detailed study of the structural, electronic, and optical properties of the bis‐dipolar emissive oligoarylfluorenes, OF(2)Ar‐NPhs. The aim of our quantum‐chemical calculations is to investigate the role of the transition and the influence of the optical properties of the various central aryl cores in the oligoarylfluorenes. Geometry optimizations were performed for the ground‐state and for the first electronically excited‐state. The absorption and emission spectra were calculated using time‐dependent density functional theory (TD‐DFT). The results show that the HOMO, LUMO, energy gap, ionization potentials (IP), electron affinities (EA) and reorganization energy (λ) of the oligoarylfluorenes are significantly affected by the electronic withdrawing property and the conjugated length of the central aryl core. Consistently, the stronger the electron withdrawing strength, the lower the LUMO energy is. This thus improves the electron‐accepting and transporting properties by the low LUMO energy levels. The absorption and emission spectra of this series of bis‐dipolar molecules exhibit red shifts to some extent by the electronic nature of the electron affinitive central core in the oligoarylfluorenes. All the calculated results show that the oligoarylfluorenes are promising as useful light emitting materials for OLEDs. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号