首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Monte Carlo method (computer simulation) is used to construct a physical model of secondary particles emission induced by the simulated irradiation of a gold nanoparticle with 60Co. It is demonstrated that the modification of the nanoparticle surface with polyethylene glycol affects the spectrum of secondary electrons produced in a nanoparticle and leaving it and its shell. The model takes into account the size and the chemical composition of the shell and provides an opportunity to design antitumor radiosensitizers based on gold nanoparticles.  相似文献   

2.
Pure metal iron nanoparticles are unstable in the air. By a coating iron on nanoparticle surface with a stable noble metal, these air-stable nanoparticles are protected from the oxidation and retain most of the favorable magnetic properties, which possess the potential application in high density memory device by forming self-assembling nanoarrays. Gold-coated iron core-shell structure nanoparticles (Fe/Au) synthesized using reverse micelles were characterized by transmission electron microscopy (TEM). The average nanoparticle size of the core-shell structure is about 8 nm, with about 6 nm diameter core and 1∼2 nm shell. Since the gold shell is not epitaxial growth related to the iron core, the morié pattern can be seen from the overlapping of iron core and gold shell. However, the gold shell lattice can be seen by changing the defocus of TEM. An energy dispersive X-ray spectrum (EDS) also shows the nanoparticles are air-stable. The magnetic measurement of the nanoparticles also proved successful synthesis of gold coated iron core-shell structure. The nanoparticles were then assembled under 0.5 T magnetic field and formed parallel nanobands with about 10 μm long. Assembling two dimensional ordered nanoarrays are still under going. Received 29 November 2000  相似文献   

3.
一种用于表面等离子体共振传感器的纳米多孔金膜   总被引:1,自引:0,他引:1  
为了打破传统的表面等离子体共振(SPR)生物传感器灵敏度不高的限制,近年来纳米材料在SPR生物传感器中的运用得到广泛的研究。但是纳米材料的制备一般都比较困难而且费用高昂,这给研究带来了困难。笔者采用化学腐蚀法制备出一种纳米多孔金膜,利用扫描电子显微镜和光谱仪等测试手段对该金膜的结构和光学性质进行了分析,并将该金膜用于SPR生物传感器实验研究。结果表明,与传统的平面金膜相比,该纳米多孔金膜具有独特的局域表面等离子体共振效应。装配有该金膜的SPR生物传感器在对生物试剂的检测中灵敏度有了一定程度的提高,且该金膜的制备方法简单,成本低廉,完全可以替代传统的平面金膜使用。  相似文献   

4.
As a cathode reaction in fuel cells, oxygen reduction reaction (ORR) plays a critical role in determining the overall performance of a fuel cell. It is still a big challenge to find effective ways to improve the catalytic activity, efficiency, and especially stability of ORR electrocatalysts. In the present study, single nanoparticle electrocatalysis for ORR is realized for the first time by encaging PtPd nanocube in hollow and porous carbon nanosphere (PtPd@HCS). Through tuning the carbon‐shell thickness by carbonization temperature, the effects of carbon‐shell thickness on ORR catalytic performance of PtPd@HCS are systematically investigated. The PtPd@HCS calcinated at 800 °C (PtPd@HCS‐800) with the thinnest carbon shell (3.52 nm) and rich pore structure exhibits enhanced ORR catalytic activity and stability. The strategy mentioned here is expected to provide a new method to design single nanoparticle electrocatalysts for fuel cells with high catalytic performance and reduced loading of precious metals.  相似文献   

5.
Acoustic levitation supplies a containerless state to eliminate natural convection and heterogeneous crystal nucleation and thus provides a highly uniform and ultra clean condition in the confined levitating area. Herein, we attempt to make full use of these advantages to fabricate well dispersed metal nanoparticles. The gold nanoparticles, synthesized in an acoustically levitated droplet, exhibited a smaller size and improved catalytic performance in 4-nitrophenol reduction were synthesized in an acoustically levitated droplet. The sound field was simulated to understand the impact of acoustic levitation on gold nanoparticle growth with the aid of crystal growth theory. Chemical reducing reactions in the acoustic levitated space trend to occur in a better dispersed state because the sound field supplies continuous vibration energy. The bubble movement and the cavitation effect accelerate the nucleation, decrease the size, and the internal flow inside levitated droplet probably inhibit the particle fusion in the growth stage. These factors lead to a reduction in particle size compared with the normal wet chemical synthetic condition. The resultant higher surface area and more numerous active catalytic sites contribute to the improvement of the catalytic performance.  相似文献   

6.
The relationship between nanoparticle size, charge, shape, and in vivo biodistribution is of great importance for the rational design and selection of intravenously administered nanoparticles. A resource that aids in the selection and design of nanomaterials for this purpose would be a valuable tool. Previous literature reviews have examined narrow categories of nanomaterials or have not statistically analyzed a broad range of nanomaterial literature. Here, data regarding the biodistribution of intravenously administered synthetic and organic nanomaterials in animal models from literature available in PubMed is collected. This work outlines the effect of nanoparticle size, charge, shape, animal sex, and animal disease status on biodistribution of intravenously administered nanomaterials. Particle size and charge are found to significantly and independently influence biodistribution to several organs. Finally, animal sex and disease state are observed to function as effect modifiers for biodistribution.  相似文献   

7.
Synthesis of core @ shell (Au @ Ag) nanoparticle with varying silver composition has been carried out in aqueous poly vinyl alcohol (PVA) matrix. Core gold nanoparticle (~15 nm) has been synthesized through seed-mediated growth process. Synthesis of silver shell with increasing thickness (~1–5 nm) has been done by reducing Ag+ over the gold sol in the presence of mild reducing ascorbic acid. Characterization of Au @ Ag nanoparticles has been done by UV–Vis, High resolution transmission electron microscope (HRTEM) and energy dispersive X-ray (EDX) spectroscopic study. The blue shift of surface plasmon resonance (SPR) band with increasing mole fraction of silver has been interpreted due to dampening of core, i.e. Au SPR by Ag. The dependence of nonlinear optical response of spherical core @ shell nanoparticles has been investigated as a function of relative composition of each metal. Simulation of SPR extinction spectra based on quasi-static theory is done. A comparison of our experimental and the simulated extinction spectra using quasi-static theory of nanoshell suggests that our synthesized bimetallic particles have core @ shell structure rather than bimetallic alloy particles.  相似文献   

8.
Laser ablation in liquids has emerged as a new branch of nanoscience for developing various nanomaterials with different shapes. However, how to design and control nanomaterial growth is still a challenge due to the unique chemical-physical process chain correlated with nanomaterial nucleation and growth, including plasma phase (generation and rapid quenching), gas (bubble) phase, and liquid phase. In this review, through summarizing the literature about this topic and comparing with the well-established particle growth mechanisms of the conventional wet chemistry technique, our perspective on the possible nanoparticle growth mechanisms or routes is presented, aiming at shedding light on how laser-ablated particles grow in liquids. From the microscopic viewpoint, the nanoparticle growth contains six mechanisms, including LaMer-like growth, coalescence, Ostwald ripening, particle (oriented) attachment, adsorbate-induced growth and reaction-induced growth. For each microscopic growth mechanism, the vivid growth scenes of some representative nanomaterials recorded by TEM and SEM measurements are displayed. Afterwards, the scenes from the macroscopic viewpoint for the large submicro- and micro-scale nanospheres and anisotropic nanostructures formation and evolution from one nanostructure into another one are presented. The panorama of how diverse nanomaterials grow during and after laser ablation in liquids shown in this review is intended to offer a overview for researchers to search for the possible mechanisms correlated to their synthesized nanomaterials, and more expectation is desired to better design and tailor the morphology of the nanocrystals synthesized by LAL technique.  相似文献   

9.
Surface‐enhanced Raman scattering (SERS) is an extremely powerful tool for the analysis of the composition of bimetallic nanoparticle (BNP) surfaces because of the different adsorption schemes adopted by several molecules on different metals, such as Au and Ag. The preparation of BNPs normally implies a change in the plasmonic properties of the core metal. However, for technological applications it could be interesting to synthesize core–shell structures preserving these original plasmonic properties. In this work, we present a facile method for coating colloidal gold nanoparticles (NPs) in solution with a very thin shell of silver. The resulting bimetallic Au@Ag system maintains the optical properties of gold but shows the chemical surface affinity of silver. The effectiveness of the coating method, as well as the progressive silver enrichment of the outermost part of the Au NPs, has been monitored through the SERS spectra of several species (chloride, luteolin, thiophenol and lucigenin), which show different behaviors on gold and silver surfaces. A growth mechanism of the Ag shell is proposed on the basis of the spectroscopic and microscopic data consisting in the formation and deposit of Ag clusters on the Au NP surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Gold nanoshells are of great interest in optical imaging based on their light scattering properties and photothermal therapy due to their light absorption properties. Strong light scattering is essential for optical imaging, while effective photothermal therapy requires high light absorption. In this article, the optimal core radii and shell thicknesses of silica–gold and hollow gold nanoshells, possessing maximal light scattering and absorption at wavelengths between 700 and 1100 nm, are obtained using the Mie theory of a coated sphere. The results show that large-sized gold nanoshells of high aspect ratios (the aspect ratio is defined as the ratio of core radius to shell thickness) are the efficient contrast agents for optical imaging, while smaller gold nanoshells of high aspect ratios are the ideal therapeutic agents for photothermal therapy. From the comparison of the numerical results for silica–gold and hollow gold nanoshells, the latter are seen to offer a little superior light scattering and absorption at smaller particle size. Fitting expressions for the optimal core radii and shell thicknesses are also obtained, which can provide design guidelines for experimentalists to optimize the synthetic process of gold nanoshells.  相似文献   

11.
Gold nanoshells with tunable surface plasmon resonances are a promising material for optical and biomedical applications. They are produced through seed‐mediated growth, in which gold nanoparticles (AuNPs) are seeded on the core particle surface followed by growth of the gold seeds into a shell. However, synthetic gold nanoshell production is typically a multistep, time‐consuming batch‐type process, and a simple and scalable process remains a challenge. In the present study, a continuous flow process for the seed‐mediated growth of silica–gold nanoshells is established by exploiting the excellent mixing performance of a microreactor. In the AuNP‐seeding step, the reduction of gold ions in the presence of core particles in the microreactor enables the one‐step flow synthesis of gold‐decorated silica particles through heterogeneous nucleation. Flow shell growth is also realized using the microreactor by selecting an appropriate reducing agent. Because self‐nucleation in the bulk solution phase is suppressed in the microreactor system, no washing is needed after each step, thus enabling the connection of the microreactors for the seeding and shell growth steps into a sequential flow process to synthesize gold nanoshells. The established system is simple and robust, thus making it a promising technology for producing gold nanoshells in an industrial setting.  相似文献   

12.
Carbon quantum dots (CQDs) are a unique class of 0D nanomaterials, featured by a graphitic core and shell layers saturated with hydrogen atoms and functional groups. CQDs are prepared through top-down and bottom-up strategies from natural and synthetic precursors. CQDs can be modified through chemical (e.g., surface functionalization/passivation, doping, etc.) and physical (e.g., core–shell architecture, composite material blending, etc.) strategies to control their properties. This review highlights the effect of such modifications on the photophysical properties of CQDs, such as photoluminescence (PL), absorbance, and relaxivity. The dependence of PL upon the size, orientation at the edges, surface and edge functionalization, doping, excitation wavelength, concentration, pH, aggregate formation, etc., are summarized along with the supporting theoretical evidence available in the literature. Also, this review outlines the recent advancements, and future prospective of optical (e.g., sensing, bioimaging, and fluorescent ink) and catalytic applications (e.g., photocatalysis and electrocatalysis) of CQDs enhanced through physical and chemical modifications of their structure and composition.  相似文献   

13.
Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning “surface active agents”, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.  相似文献   

14.
The interaction between gold nanoparticles and bovine serum albumin (BSA) in aqueous solutions was studied. The formation of nanoparticle—BSA associates was demonstrated, which is expressed in a bathochromic shift of the surface plasmon resonance band by 5–6 nm in the absorption spectrum. The results were approximated using the Drude model for metal spheres. The thickness of the dielectric (protein) shell of the nanoparticle and its permittivity (refractive index) were calculated.  相似文献   

15.
Nanostructured semiconductor architectures have attractive optical properties mainly including bright photoluminescence (PL) resulting from the radiative recombination of charge carriers on surface states. Various approaches have been employed for the modification of surface states of these nanostructures to design new nanomaterials with enhanced PL primarily in aqueous medium to enable their applications in biological samples. Here, we report the varying efficiencies of three commercial surfactants viz. cetyltrimethylammonium bromide (CTAB), cetyltrimethylammonium chloride (CTAC) and cetylpyridinium chloride (CPyC) on the dynamics of PL emission enhancement during initial growth and Ostwald ripening of ZnS nanoparticles (NPs). The counterion has been estimated to behave differently to govern the PL enhancement. The exceptionally high tendency of CPyC in PL enhancement has been assigned to participation of π-electrons of pyridinium ring. The impact of UV-light in photoactivation of surfactant stabilized ZnS NPs has been utilized in exploring significance of surfactants in improving the surface emitting states in water soluble semiconductor NPs.  相似文献   

16.
The synthetic route of unsubstituted polythiophene (PT) nanoparticles was investigated in aqueous dispersion via Fe3+-catalyzed oxidative polymerization. With this new synthetic method, high conversion of thiophene monomers was obtained with only a trace of FeCl3. The dispersion state showed that the PT nanoparticles were well dispersed in many polar solvents, compared to non-polar solvents, such as acetone, chloroform, hexane, and ethyl acetate. To compare the photoluminescence properties between PT nanoparticle dispersion and PT bulk polymers, the PL intensities were measured in the same measuring conditions. Further, core–shell poly(styrene/thiophene) (poly(St/Th)) latex particles were successfully prepared by Fe3+-catalyzed oxidative polymerization during emulsifier-free emulsion polymerization. The different polymerization rates of each monomer resulted in core–shell structure of the poly(St/Th) latex particles. The PL data of the only crumpled shells gave evidence that the shell component of core–shell poly(St/Th) latex particles is indeed PT, which was corroborated by SEM data. PL intensity of the core–shell poly(St/Th) nanoparticle dispersion was much higher than that of the PT nanoparticle dispersion, due to its thin shell layer morphology, which was explained by the self-absorption effect.  相似文献   

17.
This paper reports on a novel design of a fiber optic surface plasmon resonance (SPR) sensor based on nanoparticle metal film. The performance of the proposed sensor in terms of its signal-to-noise ratio (SNR) and sensitivity under different conditions related to the film with spherical gold nanoparticles embedded in a host material is theoretically analyzed. In particular, the effect of the parameters such as gold particle size, film thickness, and refractive index of host material is studied and the possible explanation, whenever required, is given. The numerical results presented in this paper leads to fulfill the requirement of significant optimization of the important design parameters to achieve a high SNR and sensitivity of a fiber optic SPR sensor with nanoparticle films.  相似文献   

18.
Complex shaped nanoparticles featuring structural or surface chemical patchiness are of special interest in both fundamental and applied research areas. This study reports the preparation and optical properties of gold/silica “mushroom” nanoparticles, where a gold particle is only partially covered by the silica cap. The synthetic approach allows precise control over the particle structure. The interfacial preparation method relies on partially embedding the gold particles in a polystyrene layer that masks the immersed part of the gold particle during silica shell growth from an aqueous solution. By adjusting sacrificial polystyrene film thickness and silica growth time, precise control over the coverage and cap thickness can be achieved. Correlative electron microscopy and single particle scattering spectroscopy measurements underline the high precision and reproducibility of the method. The good agreement between the measured and simulated single particle spectra supported by near‐field calculations indicates that the observed changes in the dipolar plasmon resonance are influenced by the extent of coverage of the gold core by the silica cap. The straightforward methods readily available for gold and silica surface modification using range of different (bio)molecules make these well‐defined nanoscale objects excellent candidates to study fundamental processes of programmed self‐assembly or application as theranostic agents.  相似文献   

19.
Controlled and simple synthesis strategy of two-dimensional (2D) nanomaterials is critical for designing the related heterostructures with different geometries, which influence strain, electronic structures, light-interactions, and surface reactions. Here, we report a single-step growth method for wrinkled MoSe2 thin films on flat SiO2/Si substrates by using high-vacuum co-evaporation. Above the critical film thickness of 15–20?nm, the MoSe2 films start to form wrinkled structure with lateral periodicity of 7–10?μm, which significantly reduces light reflectance in the visible range. We demonstrate formation of the wrinkled pattern on the selective area either by etching the substrate surface or by depositing gold films. In addition, we observe switching of the microscopic growth mode from a layered stacking to a vertically aligned growth, which results in 2D-3D hybrid microstructures. Our single-step synthesis approach might be generalized to obtain wrinkled 2D-3D hybrid nanomaterials and utilized for flexible electronic & optoelectronic devices, efficient solar cells, catalytic electrodes, and anti-counterfeiting applications.  相似文献   

20.
The generation and characterization of nanoparticulate carrier systems is important for drug delivery, biosensing and in vivo or in vitro diagnostics. Conventional nanoparticle generation is based on chemical synthesis methods requiring time intensive reaction and additive design for each material. Successive purification and surface functionalisation is often required after the nanoparticle generation to achieve pure nanoparticle-bioconjugates. We established a novel single step method, which allows the generation of pure nanoparticles and their in situ conjugation with biomolecules bearing electron donating moieties using pulsed laser ablation in liquids. For comparison between unspecific binding and binding through strong dative bonds (here: S-Au), we applied this preparation method to the conjugation of gold nanoparticles with unmodified and thiolated oligonucleotides. In order to determine optimal parameters (laser pulse energy, focus diameter), the influence on productivity of nanoparticle generation and their interaction with oligonucleotides is studied. We report quenching of nanoparticle growth and modification of the surface plasmon resonance as evidence of a successful functionalisation. Their stability in ionic solutions is evidenced with relevance to biological and medical assays. Negligible differences between the two model bioconjugations evidence the universality of the established in situ bioconjugation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号