首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The ability to control the assembly of nanoparticle building blocks is critically important for the development of new materials and devices. The properties and functions of nanomaterials are not only dependent on the size and properties of individual particles, but also the interparticle distance and interactions. In order to control the structures of nanoassemblies, it is important to first achieve a precise control on the chemical functionality of nanoparticle building blocks. This review discusses three methods that have been reported recently for the preparation of monofunctional gold nanoparticles, i.e., nanoparticles with a single chemical functional group attached to each particle. The advantages and disadvantages of the three methods are discussed and compared. With a single functional group attached to the surface, one can treat such nanoparticles as molecular building blocks to react with other molecules or nanoparticles. In other words, by using appropriate chemical reactions, nanoparticles can be linked together into nanoassemblies and materials by covalent bonds, similar to the total chemical synthesis of complicated organic compounds from smaller molecular units. An example of using this approach for the synthesis of nanoparticle/polymer hybrid materials with optical limiting properties is presented. Other potential applications and advantages of covalent bond-based nanoarchitectures vs. non-covalent interaction-based supramolecular self-assemblies are also discussed briefly in this review.  相似文献   

2.
Inspired by natural dewetting phenomena, such as the coffee‐ring effect, researchers are developing strategies for the controlled assembly of colloidal particles into functional nanoparticle conglomerates. Colloidal assembly techniques are regarded as green methods as they reduce or eliminate the use or generation of hazardous substances involved in other manufacturing modalities. This review discusses several recent developments in interface colloidal deposition for preparing nanoparticle wires and integrated nanoparticle wire arrays. Moreover, this review covers real applications of these structures for electric detection of chemical and biological molecules among other functions.  相似文献   

3.
王新亮  狄勤丰  张任良  顾春元  丁伟朋  龚玮 《物理学报》2012,61(14):146801-146801
提出了纳米颗粒水基分散液的力学-化学双重减阻机制,并通过对比岩心切片吸附纳米颗粒前后以及冲刷前后的表面微结构、润湿性的变化,进行了实验验证. 研究结果表明,经纳米颗粒水基分散液处理之后的岩心切片表面表现为强亲水性, 并且存在一层致密的纳米颗粒吸附层;冲刷之后岩心切片表面的纳米颗粒吸附层依然存在, 但其表面已逐渐转变为强/超疏水性,反映了纳米颗粒吸附层表面的表面活性剂被逐渐清洗干净. 注水初期,主要表现为表面活性剂的化学减阻作用.随着注水过程的进行, 主要体现为以疏水表面的滑移效应为主的力学减阻机制.岩心驱替实验结果表明, 纳米颗粒水基分散液驱替后的岩心的水相渗透率平均提高幅度达84.3%, 减阻效果显著,证实了纳米颗粒水基分散液的力学-化学双重减阻机制.  相似文献   

4.
The preparation of PbS nanoparticle is important in material science. Due to its predominant ionic character and low optical band gap (0.41 eV), it shows quantum confinement effect up to a larger size domain compared to other well studied semiconductor materials, such as ZnS and CdS, having predominantly covalent character. In this report, we present a simpler method of preparation of nanosized PbS in micellar medium of the surfactant AOT and spectrophotometric, fluorimetric, light scattering and electron microscopic characterization of the dispersion.  相似文献   

5.
Novel partially phosphonated polyethylenimine polymers are developed in order to control the modification of nanoparticle (NP) surfaces. This polymer is built by an accessible one‐step process. The numerous phosphonate functions assume both a strong covalent anchoring on metal oxide NPs and a modulation of electric charges, while amino groups are associated with dispersion preservation and subsequent biofunctionalization. The zwitterionic nanomaterials obtained display a good stability toward pH and ionic strength. According to the selected percentage of phosphonation and the polymer size, zeta potential, and diameter of the particles are controlled.  相似文献   

6.
The addition of superparamagnetic iron nanoparticles into polystyrene matrix allows for the modification of the physical properties as well as the implementation of new features in the hybrid nanomaterials. These materials have excellent potential for biomedical and bioengineering applications. Nevertheless, it is necessary to achieve a good dispersion of magnetic nanoparticles for its successful incorporation into polymer particles. This can be obtained through the use of a stabilizer, which provides stability against aggregation. In this work, magnetic nanoparticles were dispersed using different stabilizers. Subsequently, ferrofluids stabilized using the mixture of ABEX/IGEPAL and acrylic acid (AA) were used to synthesize PS-Fe3O4 nanocomposites, through miniemulsion and emulsion polymerization conventional techniques. Semicontinuous and batch processes were compared, by varying surfactants and their concentrations. The PS-Fe3O4 nanoparticles were characterized by dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and vibrating sample magnetometer. Magnetic nanoparticle dispersions show better results when the anionic and nonionic surfactants are used as a mixture rather than when used alone. Results of DLS showed that the semicontinuous process allowed obtaining monodisperse materials, whereas polidisperse systems are generated in batch process. Raman spectroscopy confirmed the presence of magnetite and polystyrene in the nanocomposites. PS-Fe3O4 nanoparticles showed superparamagnetic behavior with final magnetization of around 0.01 emu/g and low coercivity, properties that make them suitable for applications in wide fields of technology. Particle size (Dz), was lower than 300 nm in all cases. Moreover, the use of AA as stabilizer allows enhancing the PS-Fe3O4 composite properties. These findings showed that particle size, morphology, and agglomeration are directly influenced by the concentration and the type of surfactant employed.  相似文献   

7.
Nanomaterials have attracted much attention from academic to industrial research. General methodologies are needed to impose architectural order in low-dimensional nanomaterials composed of nanoobjects of various shapes and sizes, such as spherical particles, rods, wires, combs, horns, and other non specified geometrical architectures. These nanomaterials are the building blocks for nanohybrid materials, whose applications have improved and will continuously enhance the quality of the daily life of mankind. In this article, we present a comprehensive review on the synthesis, dimension, properties, and present and potential future applications of nanomaterials and nanohybrids. Due to the large number of review articles on specific dimension, morphology, or application of nanomaterials, we will focus on different forms of nanomaterials, such as, linear, particulate, and miscellaneous forms. We believe that almost all the nanomaterials and nanohybrids will come under these three categories. Every form or dimension or morphology has its own significant properties and advantages. These low-dimensional nanomaterials can be integrated to create novel nano-composite material applications for next-generation devices needed to address the current energy crisis, environmental sustainability, and better performance requirements. We discuss the synthesis, properties, and morphology of different forms of nanomaterials (building blocks). Moreover, we elaborate on the synthesis, modification, and application of nanohybrids. The applications of these nanomaterials and nanohybrids in sensors, solar cells, lithium batteries, electronic, catalysis, photocatalysis, electrocatalysis, and bio-based applications will be detailed. The time is now ripe to explore new nanohybrids that use individual nanomaterial components as basic building blocks, potentially affording additionally novel behavior and leading to new, useful applications. In this regard, the combination or integration of linear nanorods/nanowires and spherical nanoparticles to produce mixed-dimensionality, higher-level nanocomposites of greater complexity is an interesting theme, which we explore in this review article.  相似文献   

8.
This paper reports on the dispersion stability of 150 nm polyvinyl alcohol coated biochar nanoparticles in brine water. Biochar is a renewable, carbon based material that is of significant interest for enhanced oil recovery operations primarily due to its wide ranging surface properties, low cost of synthesis, and low environmental toxicity. Nanoparticles used as stabilizing agents for foams (and emulsions) or in nanofluids have emerged as potential alternatives to surfactants for subsurface applications due to their improved stability at reservoir conditions. If, however, the particles are not properly designed, they are susceptible to aggregation because of the high salinity brines typical of oil and gas reservoirs. Attachment of polymers to the nanoparticle surface, through covalent bonds, provides steric stabilization, and is a necessary step. Our results show that as the graft density of polyvinyl alcohol increases, so too does the stability of nanoparticles in brine solutions. A maximum of 34 wt% of 50,000 Da polyvinyl alcohol was grafted to the particle surface, and the size of the particles was reduced from ~3500 nm (no coating) to 350 nm in brine. After 24 h, the particles had a size of ~500 nm, and after 48 h completely aggregated. 100,000 Da PVA coated at 24 wt% on the biochar particles were stable in brine for over 1 month with no change in mean particle size of ~330 nm.  相似文献   

9.
Inorganic nanoparticles offer novel promising properties for biological sensing and imaging, as well as in therapeutics. However, these applications are often complicated by the possible toxicity of conventional nanomaterials, arising as a result of inadequate purification procedures of nanoparticles obtained via synthetic pathways using toxic or non-biocompatible substances. We review novel femtosecond laser-assisted methods, which enable the preparation of metal nanomaterials in clean, biologically friendly aqueous environment (“green” synthesis) and thus completely solve the toxicity problem. The proposed methods, including laser ablation and fragmentation, make possible the production of stable metal colloids of extremely small size (∼2 nm) with a low coefficient of variation (15–25%). Those nanoparticles exhibit unique surface chemistry and can be used for bio-imaging, cancer treatment and nanoparticle-enhanced Raman spectroscopy.  相似文献   

10.
章建辉  韩季刚 《物理学报》2015,64(9):97702-097702
氧化锌(ZnO) 纳米材料因其在UV 激光器、发光二极管、太阳能电池、稀磁半导体、生物荧光标示、靶向药物等领域中的广泛应用而成为最热门的研究课题之一. 调节和优化ZnO 纳米结构的性质是ZnO 的实际应用迫切所需. 在此, 通过发展聚乙烯吡咯烷酮导向结晶法、微波加热强制水解法、表面活性剂后处理法, 成功地制备出了尺寸、表面电荷或成分可调的球、半球、棒、管、T 型管、三脚架、片、齿轮、两层、多层、带盖罐子、碗等一系列ZnO 纳米结构. 通过简单地改变ZnO 纳米粒子的尺寸、形貌和表面电荷或成分, 有效地调控ZnO 本身的发光强度和位置, 并近90 倍地增强了荧光素染料的荧光强度; 诱使了强度可调的室温铁磁性; 实现了对ZnO纳米颗粒的细胞毒性的系统性调控.  相似文献   

11.
Aqueous suspensions of composite nanoparticles of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) are fabricated by miniemulsion method using three different ionic surfactants. The aim is to study how the length and conformation of the surfactants alkyl chains affect the properties of the nanoparticles. While the morphology and dimensions of the nanoparticles are similar, UV–vis spectroscopy evidences that the internal aggregation and ordering of the P3HT chains varies within the three nanoparticle formulations. The surfactant with branched alkyl chains promote the highest degree of ordering of P3HT chains in the nanoparticles (leading to increased conjugation length). In contrast, the lowest ordering is found for the nanoparticles with the surfactant having the shortest linear alkyl chain. The optical/structural properties of nanoparticles are partially retained in the films. Besides, the surfactant with branched alkyl chains favors the strongest coalescence of nanoparticles in the thin film, promoting a further ordering of the polymeric chains in the most external shell of the nanoparticles as evidenced by steady-state and time-resolved UV–vis spectroscopy and confocal fluorescence microscopy. These findings might guide the engineering of new surfactants for composite nanoparticles for optoelectronic applications.  相似文献   

12.
Here, we present a review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms. For purpose of this review, silver nanomaterials include silver nanoparticles, stabilized silver salts, silver–dendrimer, polymer and metal oxide composites, and silver-impregnated zeolite and activated carbon materials. While there is some evidence that silver nanoparticles can directly damage bacteria cell membranes, silver nanomaterials appear to exert bacteriocidal activity predominantly through release of silver ions followed (individually or in combination) by increased membrane permeability, loss of the proton motive force, inducing de-energization of the cells and efflux of phosphate, leakage of cellular content, and disruption DNA replication. Eukaryotic cells could be similarly impacted by most of these mechanisms and, indeed, a small but growing body of literature supports this concern. Most antimicrobial studies are performed in simple aquatic media or cell culture media without proper characterization of silver nanomaterial stability (aggregation, dissolution, and re-precipitation). Silver nanoparticle stability is governed by particle size, shape, and capping agents as well as solution pH, ionic strength, specific ions and ligands, and organic macromolecules—all of which influence silver nanoparticle stability and bioavailability. Although none of the studies reviewed definitively proved any immediate impacts to human health or the environment by a silver nanomaterial containing product, the entirety of the science reviewed suggests some caution and further research are warranted given the already widespread and rapidly growing use of silver nanomaterials.  相似文献   

13.
李荣金  李洪祥  胡文平  刘云圻 《物理》2006,35(6):476-486
文章简要回顾了功能聚合物的发现和发展历程,着重介绍了其在发光二极管、太阳能电池、场效应晶体管、传感器件、纳米材料与器件中的应用。  相似文献   

14.
The thermal transport across the alkanethiol surfactant layer at the nanoparticle/base fluid interface in nanofluids was investigated by molecular dynamics simulation, with consideration of the conformation of the surfactant layer with different surfactant chain lengths and backbone stiffness. The variation of temperature drop at nanoparticle-surfactant interface reveals that the interfacial thermal conductance was mediated by the chain length, possibly due to the difference in the adsorption density of surfactant on the surface of the nanoparticles, because of the blocking effect from the bending of the long alkyl chains. The intrinsic thermal conductivity of the surfactant layer increased with decreasing chain length and increasing chain stiffness because of the phonon scattering effect from the bending and cross-linking of the alkyl chains. We quantified the modes of heat flow across the surfactant layer and found that the contribution of intramolecular bonded interaction was much higher than that of atomic translation and nonbonded interaction separately. By analysing the variation of bonded interaction contrition with chain length and stiffness, it is demonstrated that the increased thermal conductivities benefited from the enhanced thermal transfer through the covalent bonds of surfactant molecules. The results can provide insights into the design of thermally conductive surfactants.  相似文献   

15.
Mass-produced carbon nanotubes (CNTs) are strongly aggregated and highly hydrophobic, and processes to make them water soluble are required for biological applications. Both covalent and non-covalent strategies are pursued for obtaining stable, highly concentrated CNT aqueous dispersions. Covalent functionalization has the great disadvantage of producing an irreversible chemical modification of nanotubes, thus alterating their mechanical, chemical and electric properties. On the other hand, non-covalent functionalization is often obtained by employing surfactants that sensibly affect cell viability. Moreover, derivatization with biological moieties is often impossible through non-covalent CNT dispersion. This paper proposes a non-covalent dispersion of multi-wall CNT based on a lipidic mixture that can guarantee high concentration and high stability as well as high cytocompatibility. Moreover, CNTs wrapped with a lipid membrane are realized to demonstrate that the proposed CNTs can be functionalised with a dodecapeptide that specifically recognizes activated platelets without chemical modification of the nanotube itself.  相似文献   

16.
Nanostructured semiconductor architectures have attractive optical properties mainly including bright photoluminescence (PL) resulting from the radiative recombination of charge carriers on surface states. Various approaches have been employed for the modification of surface states of these nanostructures to design new nanomaterials with enhanced PL primarily in aqueous medium to enable their applications in biological samples. Here, we report the varying efficiencies of three commercial surfactants viz. cetyltrimethylammonium bromide (CTAB), cetyltrimethylammonium chloride (CTAC) and cetylpyridinium chloride (CPyC) on the dynamics of PL emission enhancement during initial growth and Ostwald ripening of ZnS nanoparticles (NPs). The counterion has been estimated to behave differently to govern the PL enhancement. The exceptionally high tendency of CPyC in PL enhancement has been assigned to participation of π-electrons of pyridinium ring. The impact of UV-light in photoactivation of surfactant stabilized ZnS NPs has been utilized in exploring significance of surfactants in improving the surface emitting states in water soluble semiconductor NPs.  相似文献   

17.
Nanotechnology is set to impact a wide range of various fields, including medicine, materials technology, environmental sciences, and engineering/manufacturing. Nanoparticles are categorized depending on their size, composition, shape, and surface functionality. Due to the excessive growth of nanostructured materials (NSMs) in production and industrial applications, human and environmental exposure to them and their possible toxicity issues are inevitable. The main objective of this review is to study NSMs, in particular metallic and metallic oxide nanoparticles, and properties that have a determinative role in their bioimpacts. Nevertheless, the main focus is to provide an overview of NSMs toxicology. Medical and environmental applications of the NSMs are discussed here. Also, key factors on the toxicity of the nanoparticles such as shape, size, chemical composition, and surface functionality are discussed. Finally, toxicity of the nanoparticles is going to be highlighted, and relevant studies are critically compared. This review gives a broad scientific view for improving the functional efficiency of nanomaterials while mitigating their possible adverse and unintended effects on biological systems.  相似文献   

18.
In this paper, an overview of the synthesis, chemistry and applications of nanosystems carried out in our laboratory is presented. The discussion is divided into four sections, namely (a) chemistry of nanoparticles, (b) development of new synthetic approaches, (c) gas phase clusters and (d) device structures and applications. In ‘chemistry of nanoparticles’ we describe a novel reaction between nanoparticles of Ag and Au with halocarbons. The reactions lead to the formation of various carbonaceous materials and metal halides. In ‘development of new synthetic approaches’ our one-pot methodologies for the synthesis of core-shell nanosystems of Au, Ag and Cu protected with TiO2 and ZrO2 as well as various polymers are discussed. Some results on the interaction of nanoparticles with biomolecules are also detailed in this section. The third section covers the formation of gas phase aggregates/clusters of thiol-protected sub-nanoparticles. Laser desorption of H2MoO4, H2WO4, MoS2, and WS2 giving novel clusters is discussed. The fourth section deals with the development of simple devices and technologies using nanomaterials described above.  相似文献   

19.
Abastract A dispersion relation is derived and analyzed for the spectrum of capillary motions on the charged plane surface of a liquid in which a surfactant is dissolved. It is shown that two additional wave motions are generated in this kind of system by bulk diffusion and surface diffusion of the surfactant and are sensitive to the diffusion coefficients and elastic properties of the surfactant films and to the viscosity of the solution and the presence of a surface charge. In solutions of inactive surfactants the growth rate of Tonks-Frenkel instability increases as the surfactant concentration increases. Zh. Tekh. Fiz. 68, 22–29 (February 1998)  相似文献   

20.
The quest for new functional nanomaterials is one of the defining purposes of nanoscience and nanotechnology. A large number of metal nanoparticles (NPs) are extensively exploited for biomedical applications. Metal NPs, in particular platinum NPs (PtNPs), possess remarkable properties that make them a potential candidate as a diagnostic or therapeutic agent. Due to potential technological interest over the last decade, PtNPs have attracted much attention in the field of anticancer research. PtNPs, when conjugated with many functionalizing agents such as polymers, ligands, drugs, peptides, and surfactants, exhibit improved targeting and reduced cytotoxic effects in various cancers. The PtNPs conjugated with folic acid, graphene oxide, and iron NPs are gained more attention due to their stability, large surface area, and reduced toxicity. To achieve this goal, PtNPs are co-loaded with drugs or other modalities that offer an opportunity for multimodal activity in the frame of treating cancer types focusing on breast, blood, lung, ovarian, skin, liver, etc. However, a review of PtNPs’ function in diagnosis and treatment is still lacking. In this review, the effectiveness of PtNPs toward inducing and elevating death of the cancerous cells proving its delivery approaches and antitumor nature, concluding with future perspectives, are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号