首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At 300 K, an amorphous Al-oxide film is formed on NiAl(001) upon oxygen adsorption. Annealing of the oxygen-saturated NiAl(001) surface to 1200 K leads to the formation of thin well-ordered θ-Al2O3 films. At 300 K, and low-exposure oxygen atoms are chemisorbed on CoGa(001) on defects and on step edges of the terraces. For higher exposure up to saturation, the adsorption of oxygen leads to the formation of an amorphous Ga-oxide film. The EEL spectrum of the amorphous film exhibits two losses at ≈400 and 690 cm-1. After annealing the amorphous Ga-oxide films to 550 K thin, well-ordered β-Ga2O3 films are formed on top of the CoGa(001) surface. The EEL spectrum of the β-Ga2O3 films show strong Fuchs-Kliewer (FK) modes at 305, 455, 645, and 785 cm-1. The β-Ga2O3 films are well ordered and show (2×1) LEED pattern with two domains, oriented perpendicular to each other. The STM study confirms the two domains structure and allows the determination of the two-dimensional lattice parameters of β-Ga2O3. The vibrational properties and the structure of β-Ga2O3 on CoGa(001) and θ-Al2O3 on NiAl(001) are very similar. Ammonia adsorption at 80 K on NiAl(111) and NiAl(001) and subsequent thermal decomposition at elevated temperatures leads to the formation of AlN. Well-ordered and homogeneous AlN thin films can be prepared by several cycles of ammonia adsorption and annealing to 1250 K. The films render a distinct LEED pattern with hexagonal [AlN/NiAl(111)] or pseudo-twelve-fold [AlN/NiAl(001)] symmetry. The lattice constant of the grown AlN film is determined to be aAlN= 3.11 Å. EEL spectra of AlN films show a FK phonon at 865 cm-1. The electronic gap is determined to be Eg= 6.1±0.2 eV. GaN films are prepared by using the same procedure on the (001) and (111) surfaces of CoGa. The films are characterized by a FK phonon at 695 cm-1 and an electronic band gap Eg= 3.5±0.2 eV. NO adsorption at 75 K on NiAl(001) and subsequent annealing to 1200 K leads to the formation of aluminium oxynitride (AlON). An oxygen to nitrogen atomic ratio of ≈2:1 was estimated from the analysis of AES spectra. The AlON films shows a distinct (2×1) LEED pattern and the EEL spectrum exhibits characteristic Fuchs-Kliewer modes. The energy gap is determined to be Eg= 6.6±0.2 eV. The structure of the AlON film is derived from that of θ-Al2O3 formed on NiAl(001). Received: 21 March 1997/Accepted: 12 August 1997  相似文献   

2.
《Surface science》1997,380(1):L459-L462
The formation and properties of ultra-thin GaN films were investigated by means of high-resolution electron energy-loss spectroscopy (EELS) and Auger electron spectroscopy (AES). Using the intermetallic alloy CoGa as the substrate material, GaN can be prepared on the (001) surface upon adsorption of ammonia at 80 K and subsequent thermal decomposition. Ultra-thin GaN films were grown by repeated cycles of ammonia adsorption and heating to 650 K. The GaN films show an FK mode at 695 cm−1, in agreement with calculated spectra based on IR parameters. The electronic energy gap is determined to be Eg ≈ 3.5 eV.  相似文献   

3.
The response of ordered ultrathin Al2O3 films on NiAl(1 1 0) and Ni3Al(1 1 0) substrates to sequential exposures at varying pressures of H2O between 10−7 Torr and 10−3 Torr, ambient temperature, was characterized by LEED, AES and density functional theory (DFT) calculations. In all cases, an increase in average oxide thickness, as determined by AES, was observed, consistent with a field-induced oxide growth mechanism. Ordered oxide films of initial average thicknesses of 7 Å and 12 Å grown on NiAl(1 1 0) achieved a limiting thickness of 17(1) Å, while films of initial thickness of 7 Å and 11 Å grown on Ni3Al(1 1 0) achieved a limiting thickness of 12(1) Å. The LEED patterns for the thinner (7 Å) films were not observed after exposure to 10−5 Torr (NiAl(1 1 0)), or 10−4 Torr (Ni3Al(1 1 0)). In contrast, LEED patterns for the films of greater initial thickness persisted after exposures to 10−3 Torr UHV. DFT calculations indicate an Al vacancy formation energy that is significantly greater (by ∼0.5 eV) on the surface that has the thicker oxide film, directly opposite to what may be naively expected. A simple coordination argument supports these numerical results. Therefore, the greater limiting oxide thickness observed on NiAl(1 1 0) demonstrates that the rate determining step in the oxide growth process is not Al removal from the metal substrate and transport across the oxide/metal interface. Instead, the results indicate that the determining factor in the oxide growth mechanism is the kinetic barrier to Al diffusion from the substrate bulk to the oxide/metal interface. The persistence of the LEED patterns observed for the films of greater initial oxide thickness indicates that the surface disorder generally observed for alumina films grown on aluminide substrates and exposed to intermediate pressures of H2O is due to the growth of a disordered alumina layer over an ordered substrate, rather than to direct H2O interaction with terrace sites.  相似文献   

4.
We present a self-organised approach for the synthesis of one-dimensional (1D) arrays of supported nanoclusters. By oxidising NiAl surfaces vicinal to the (1 0 0) plane tilted along the crystallographic direction [0 1 0], we produced ordered thin films of θ-Al2O3 that exhibit uniform protrusion stripes propagating uniquely along direction [0 0 1] of the NiAl. These protrusions are preferential centres for nucleation of metal deposited from a vapour; the nanoclusters grown from such metal are aligned and form massive 1D cluster arrays along direction [0 0 1]. The arrays of Co nanoclusters exhibit a diameter as small as 3 nm and length exceeding a micrometer. The results imply prospective applications for which a patterned assembly of nanoclusters is desired.  相似文献   

5.
Atomic transport in thermal growth of thin and ultrathin silicon oxide, nitride, and oxynitride films on Si is reviewed. These films constitute the gate dielectrics, the “heart” of silicon metal-oxide-semiconductor field-effect transistor (MOSFET) and dynamic random-access memory (DRAM) devices, which are usually thermally grown on the active region of the semiconductor Si substrate. The drive of ultra-large scale integration towards the 0.18 μm channel length and below requires gate dielectrics with thicknesses of 3–4 nm and less, establishing new and very strict material requirements. Knowledge on an atomic scale of dielectric film growth promoted by thermally activated transport mechanisms is essential to the engineering of this fabrication step. In the case of thermal growth of silicon oxide films on Si in dry O2, the mobile species is O2 and growth is essentially a diffusion–reaction phenomenon. The thermal growth of silicon nitride and oxynitride films on Si in NH3, NO and N2O, on the other hand, involves catalytic dissociation of the original gas molecules at the surfaces and interfaces and diffusion–reaction of different resulting species, like NH2, NH, H, N, NO, O, and O2. Hydrogen transport and incorporation is a crucial, ubiquitous issue in thermally grown dielectric films on Si which is also addressed here. A recall is made of the physico-chemical constitution of the involved surfaces and interfaces for each different dielectric material, as well as complementary studies of the gas, gas-surface, and solid phase chemistry. An outline of the unique tools of isotopic substitution and high resolution depth profiling is included.  相似文献   

6.
7.
The uniaxial tension of NiAl and FeAl intermetallic alloy nanofilms at different temperatures has been investigated by the molecular dynamics method. It was previously shown that nanofilms at 0 K are elastically deformed by almost 40% and that, under strain-controlled tension, there is a region in the stress—strain curves, where an increase in the strain is accompanied by a decrease in the tensile stress, i.e., the stiffness of nanofilms is negative. Deformation of the films in the thermal instability region is associated with the appearance of domains with different elastic strains. The influence of the temperature on these effects is investigated. Particularly, it is shown that as the temperature increases, both the elastic strain and the negative stiffness of nanofilms decrease. The inhomogeneous elastic strain and negative stiffness for FeAl films are observed in a broader temperature range (to 1000 K) than for NiAl films (to 300 K), which constitutes 0.16 and 0.65 of the melting point of these materials, respectively.  相似文献   

8.
The oxidation of Ni(1 0 0) and Ni(1 1 1) at elevated temperatures and large oxygen exposures, typical of the methods used in the preparation of NiO(1 0 0) films for surface studies, has been investigated by medium energy ion scattering (MEIS) using 100 keV H+ incident ions. Oxide film growth proceeds significantly faster on Ni(1 1 1) than on Ni(1 0 0), but on both surfaces oxide penetration occurs to depths significantly greater than 100 Å with total exposures of 1200 and 6000 L respectively. The metal/oxide interface is extremely rough, with metallic Ni extending to the surface, even for much thicker oxide films on Ni(1 1 1). On Ni(1 1 1), NiO growth occurs with the (1 0 0) face parallel to the Ni(1 1 1) surface and the close-packed 〈1 1 0〉 directions parallel. On Ni(1 0 0) the MEIS blocking curves cannot be reconciled with a single orientation of NiO(1 0 0) (with the 〈1 1 0〉 directions parallel) on the surface, but is consistent with the substantial orientational disorder (including tilt) previously identified by spot-profile analysis LEED.  相似文献   

9.
The oxidation of the (100), (110) and (111) surfaces of the intermetallic compound FeAl has been investigated using LEED and XPS. On all three surfaces, oxidation at room temperature leads to the formation of an amorphous oxide film on top of an Al-depleted interlayer. The film growth can be divided into two regions of differing kinetics, i.e. the initial formation of a closed oxide film and a subsequent thickening. In the first region, the oxygen-uptake rate varies significantly with surface orientation, while in the thickening regime the uptake is the same for all surfaces. The maximum thickness as well as the composition of the oxide films were found to depend on the initial oxidation rate. At higher oxidation temperatures, ordered oxide films of around 5–8 Å in thickness are formed, very similar to those observed on NiAl. Photoemission spectra from these ordered phases showed evidence for Al atoms in two different chemical environments, i.e. the well-known oxide species in the interior of the film and an additional species present at the oxide/alloy interface.  相似文献   

10.
ZnO films were grown on Al2O3 (0001) substrates by metal organic chemical vapor deposition at temperatures of Tg=150300 °C. Epitaxial growth was obtained for Tg200 °C. The in-plane orientation of the ZnO unit cells was found to change from a no-twist one with respect to that of the substrate at Tg=200 °C to a 30°-twist one at Tg=300 °C. Absorption and photoluminescence were observed from the film grown at 150 °C, although there was no evidence of epitaxial growth. Films grown at Tg200 °C exhibited smoother surfaces. Moreover, all the films grown at Tg=150300 °C revealed acceptor-related emission peaks, indicating the incorporation of acceptors into the films. PACS 81.15.Gh; 78.55.Et; 78.66.Hf  相似文献   

11.
NiO thin films have been grown on glass substrates by intermittent spray pyrolysis deposition of NiCl2·6H2O diluted in distilled water, using a simple “perfume atomizer”. The effect of the solution molarity on their properties was studied and compared to those of NiO thin films deposited with a classical spray system. It is shown that NiO thin films crystallized in the NiO structure are achieved after deposition. Whatever the precursor molarity, the grain size is around 25-30 nm. The crystallites are preferentially oriented along the (1 1 1) direction. All the films are p-type. However, the thickness and the conductivity of the NiO films depend on the precursor contraction. By comparison with the properties of films deposited by classical spray technique, it is shown that the critical precursor concentration, which induces strong thin films properties perturbations, is higher when a perfume atomizer is used. This broader stability domain can be attributed to better chlorides decomposition during the rest time used in the perfume atomizer technique.  相似文献   

12.
Thin films of eight metals with a thickness of 150 nm were deposited on mica substrates by thermal evaporation at various temperatures in a high vacuum. The surface morphology of the metal films was observed by atomic force microscopy (AFM) and the images were characterized quantitatively by a roughness analysis and a bearing analysis (surface height analysis). The films of Au, Ag, Cu, and Al with the high melting points were prepared at homologous temperatures T/Tm = 0.22-0.32, 0.40, and 0.56. The films of In, Sn, Bi, and Pb with the low melting points were prepared at T/Tm = 0.55-0.70, where T and Tm are the absolute temperatures of the mica substrate and the melting point of the metal, respectively. The surface morphology of these metal films was studied based on a structure zone model. The film surfaces of Au, Ag, and Cu prepared at the low temperatures (T/Tm = 0.22-0.24) consist of small round grains with diameters of 30-60 nm and heights of 2-7 nm. The surface heights of these metal films distribute randomly around the surface height at 0 nm and the morphology is caused by self-shadowing during the deposition. The grain size becomes large due to surface diffusion of adatoms and the film surfaces have individual characteristic morphology and roughnesses as T increases. The surface of the Al film becomes very smooth as T increases and the atomically smooth surface is obtained at T/Tm = 0.56-0.67 (250-350 °C). On the other hand, the atomically smooth surface of the Au film is obtained at T/Tm = 0.56 (473 ± 3 °C). The films of In, Sn, Bi, and Pb prepared at T/Tm = 0.55-0.70 also show the individual characteristic surface morphology.  相似文献   

13.
Dry O2 oxidation up to 400°C, water immersion at room temperature or H2S sulphidation at 400°C forms oxide or sulphide films on polycrystalline Co and Ni foils. X-ray photoelectron spectra (XPS) of the Co 2p and Ni 2p core levels and valence band (VB) structure changes allow the identification of the chemical state of such films and their electronic properties. They are compared with the films obtained on Mo in similar conditions. Ni appears less reactive than Co during O2 or water oxidation and is considered as a more noble metal. Dry oxidation mainly induces CoO while water immersion induces formation of CoO(OH). For Ni, phases like Ni2O3, Ni(OH)2 and/or NiO(OH) are the most probable products, respectively. H2S sulphidation always produces a sulphur-rich Co or Ni phase. The VB response to sulphidation of the three studied metals shows that Co or Ni sulphides are potential electron-donors to MoS2. Such results are relevant to the synergy observed in hydrotreating catalysis with these sulphides.  相似文献   

14.
Low Energy Electron Diffraction (LEED) has been used to study the surface structures of thin films of molecular crystals. The samples were grown epitaxially on metal single crystal substrates at low temperatures. Both Pt(111) and Ag(111) surfaces were used as substrates in order to identify the influence of the substrate on molecular film structure. Previous observations of ice (0001) and naphthalene (001) surfaces on films grown on Pt(111) substrates [Surface Sci. 55 (1976) 413], were confirmed using the Ag(111) substrate. The NH3(111) and benzene (111) surfaces were also studied on films grown on either substrate. All observed molecular crystal surfaces showed no evidence of surface reconstruction. To minimize sample charging and electron beam induced damage, LEED experiments were performed on samples of thickness less than 10?102 nm, with low energy electron exposures less than 1 C cm?2. The maximum thickness and exposure values were characteristic of the particular molecular crystal. The relationship between the structure of the initial adsorbed monolayer and the molecular crystal orientation is discussed.  相似文献   

15.
An atomically sharp interface between an antiferromagnetic oxide and a ferromagnetic metal may be obtained by the deposition of an epitaxial oxide buffer nanolayer in between. The buffer layer consists of the oxide of the ferromagnetic metal. The concept has been demonstrated on the NiO(1 0 0)-Co system, where the inclusion of a 1-2 ML CoO(1 0 0) interlayer inhibits the interfacial redox reaction which takes place between NiO and Co metal in the absence of the buffer layer.  相似文献   

16.
NiTi shape memory alloy thin films are deposited on pure Cu substrate at substrate ambient temperatures of 300 °C and 450 °C. The surface and interface oxidation of NiTi thin films are characterized by X-ray photoelectron spectroscopy (XPS). After a subsequent annealing treatment the crystallization behavior of the films deposited on substrate at different temperatures is studied by X-ray diffraction (XRD). The effects of substrate temperature on the surface and interface oxidation of NiTi thin films are investigated. In the film surface this is an oxide layer composed of TiO2. The Ni atom has not been detected on surface. In the film/substrate interface there is an oxide layer with a mixture Ti2O3 and NiO in the films deposited at substrate temperatures 300 °C and 450 °C. In the films deposited at ambient temperature, the interface layer contains Ti suboxides (TiO) and metallic Ni.  相似文献   

17.
The growth and morphology of ultra-thin CeO2(1 1 1) films on a Cu(1 1 1) substrate were investigated by means of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). The films were grown by physical vapor deposition of cerium in an oxygen atmosphere at different sample temperatures. The preparation procedure is based on a modification of a previous method suggested by Matolin and co-workers [1], involving growth at elevated temperature (520 K). Here, LEED shows good long range ordering with a “(1.5 × 1.5)” superstructure, but STM reveals a three-dimensional growth mode (Vollmer-Weber) with formation of a closed film only at larger thickness. Using a kinetically limited growth process by reactive deposition at low sample temperatures (100 K) and subsequent annealing, we show that closed layers of ceria with atomically flat terraces can be prepared even in the regime of ultra-thin films (1.5 ML). Closed and atomically flat ceria films of larger thickness (3 ML) are obtained by applying a multistep preparation procedure, in which successive ceria layers are homoepitaxially grown on this initial film. The resulting overlayers show strong similarities with the morphology of CeO2(1 1 1) single crystal surfaces, suggesting the possibility to model bulk ceria by thin film systems.  相似文献   

18.
Mössbauer spectroscopic (MS) measurements at ambient and cryogenic temperatures on powdered Fe-doped NiAl materials (Ni-40Al-9Fe and Ni-50Al-9Fe) exhibited paramagnetic behavior down to 17 K, with one Fe-site in the hosts. At 4.2 K, Ni-40Al-9Fe (Al deficient) remained paramagnetic, while Ni-50Al-9Fe (Ni deficient) displayed a magnetic transition, resolved in terms of one Fe environment. The internal magnetic field of the magnetically split site of Ni-50Al-9Fe was 185?±?8 kOe determined from a field distribution model. This shows that electronic and magnetic interactions in ordered Fe-doped NiAl depend on Fe site preference tendencies. The single Fe site observed at 4.2 K for the Ni-deficient alloy shows that its Fe distribution or site occupancy is not random but ordered. The interactions leading to the development of internal magnetic field in the Ni-deficient ordered alloy is temperature dependent being absent above 17 K based on MS measurements from ambient to 4.2 K.  相似文献   

19.
C. Noguera 《Surface science》2006,600(4):861-872
Phase diagrams and critical temperatures of projected onto fcc (1 0 0) layers, which is believed to be applicable to first-row transition metal oxides such as VO, MnO and NiO, are obtained from mean field theory and Monte Carlo simulations. Within the regime, Jse > 0, which includes MnO and NiO, both approaches predict bicritical behaviour of the AF2 and AF3 antiferromagnetic spin alignments for odd numbers of layers greater than one and monocritical behaviour for even numbers of layers, even when films are described by single values of Jd and Jse. The ferromagnetic alignment, on the other hand, exhibits monocritical behaviour for all thicknesses from the monolayer through to the bulk. For values of (x = Jd/Jse) which are close to those obtained from first principles calculations for NiO and also those derived from measured magnon spectra, estimates of the thickness dependence of the critical temperature from Monte Carlo simulations are similar to that derived from linear polarised X-ray absorption spectra of NiO(1 0 0) ultra-thin films grown epitaxially on MgO(1 0 0) [D. Alders, L.H. Tjeng, F.C. Voogt, T. Hibma, G.A. Sawatzky, J. Vogel, M. Sacchi, S. Iacobucci, Phys. Rev. B 57 (1998) 11623].  相似文献   

20.
A. Bahari  Z.S. Li 《Surface science》2006,600(15):2966-2971
The growth of ultrathin films of Si3N4 directly on Si surfaces is studied with valence band photoemission. The information from these studies about the growth mechanism and the changes of the electronic structure is enhanced by the use of various photon energies with synchrotron radiation. The silicon nitride films are grown isothermally on the Si(1 0 0) and Si(1 1 1) surfaces by reactions with atomic N. The atomic nitrogen is produced by using a remote, microwave excited nitrogen plasma. The growth under these conditions was earlier shown to be self limiting. The details in the valence band spectra are identified and resolved with numerical methods, and followed systematically during the growth. Thus the identification of Si surface states, Si-nitride interface states and bulk nitride states becomes possible. The previously obtained separation between amorphous and crystalline growth occurring around 500 °C is further supported in the present studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号