首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A femtosecond laser-assisted etching technique was applied to Pyrex glass, a kind of borosilicate glass, to perform removal processing with three-dimensional arbitrarity in design and micrometer-order spatial resolution. An aqueous solution of potassium hydroxide (KOH) was adopted as a highly selective etchant. The rate and selectivity of etching were evaluated from in situ images, and fabrication of three-dimensional microchannels was demonstrated.  相似文献   

2.
The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications induced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching properties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.  相似文献   

3.
We describe the fabrication of microoptical cylindrical and hemispherical lenses vertically embedded in a photosensitive Foturan glass by femtosecond (fs) laser three-dimensional (3D) micromachining. The process is mainly composed of four steps: (1) fs laser scanning in the photosensitive glass to form curved surfaces (spherical and/or cylindrical); (2) postannealing of the sample for modification of the exposed areas; (3) chemical etching of the sample for selective removal of the modified areas; and (4) a second postannealing for smoothening the surfaces of the tiny lenses. We examine the focusing ability of the microoptical lenses using a He-Ne laser beam, showing the great potential of using these microoptical lenses in lab-on-a-chip applications. PACS 42.62.-b; 81.05.Kf; 82.50.Pt  相似文献   

4.
We fabricate microchannels in fused silica by femtosecond laser irradiation followed by etching in diluted hydrofluoric acid. We show a dramatic dependence of the etch rate on the laser polarization, spanning 2 orders of magnitude. We establish the existence of an energy-per-pulse threshold at which etching of the laser-modified zones becomes highly polarization selective. The enhanced selective etching is due to long-range, periodic, polarization-dependent nanostructures formed in the laser-modified material.  相似文献   

5.
Three-dimensional flow-through microchannels were fabricated inside bulk fused silica glass via ultrashort pulsed laser direct writing. The device fabrication sequence takes advantage of the nonlinear volumetric absorption in glass and the subsequent preferential chemical etching process. Optical waveguides were also written into the glass specimen and integrated with the fluidic conduits. Flow tests using both fluorescent particles and red blood cells (RBCs) were conducted on various three-dimensional channel configurations. Experiments showed the possibility for laser-induced cell processing inside the microchannels. To evaluate cytometer functionality, RBCs were detected inside the manufactured microchannel via both transmission and fluorescence probing.  相似文献   

6.
A simple technique to fabricate microchannels in glasses with self-assembled silver nanoparticles (NPs) in the channels is presented. It combines thermal-electric poling of silver-to-sodium ion-exchanged glass slides with a patterned anodic electrode, formation of the microchannels via selective etching off the unpoled slide regions, and hydrogen annealing. The annealing results in the growth of NPs only on the bottom of the channels. The studies performed allowed optimizing the channels’ depth and NPs surface density for Surface Enhanced Raman Scattering (SERS) based sensing and microfluidic applications. We have demonstrated that the formed NPs allow detection of 1/20 of BPE (1,2-Di(4-pyridyl)ethylene 97%) monolayer, the evaluated Raman enhancement factor being ~4·107. The proposed approach based on the glass poling allowed us the fabrication of ~1 μm deep channels and easy multiplication of the structures because the anodic electrodes used for the poling are capable of multiple usage.  相似文献   

7.
Internal modification of transparent materials such as glass can be carried out using multiphoton absorption induced by a femtosecond (fs) laser. The fs‐laser modification followed by thermal treatment and successive chemical wet etching in a hydrofluoric (HF) acid solution forms three‐dimensional (3D) hollow microstructures embedded in photosensitive glass. This technique is a powerful method for directly fabricating 3D microfluidic structures inside a photosensitive glass microchip. We used fabricated microchips, referred to as a nanoaquarium, for dynamic observations of living microorganisms. In addition, the present technique can also be used to form microoptical components such as micromirrors and microlenses inside the photosensitive glass, since the fabricated structures have optically flat surfaces. The integration of microfluidics and microoptical components in a single glass chip yields biophotonic microchips, in other words, optofluidics, which provide high sensitivity in absorption and fluorescence measurements of small volumes of liquid samples.  相似文献   

8.
We show that a femtosecond laser enables us to produce true three-dimensional (3-D) microstructures embedded in a photosensitive glass, which has superior properties of transparency, hardness and chemical and thermal resistances. The photosensitivity arises from the cerium in the glass. After exposure to a focused laser beam, latent images are written. Modified regions are developed by a post-baking process and then preferentially etched away in a 10% dilute solution of hydrofluoric acid at room temperature. We have measured the critical dose for modification of the photosensitive glass, and fabricated 3-D microstructures with microcells and hollow microchannels embedded in the glass based on the critical dose. Received: 12 August 2002 / Accepted: 13 August 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +81-48/468-4682, E-mail: mmasudaw@postman.riken.go.jp  相似文献   

9.
In this study, a method for the fabrication of microstructures on the surface and inside Foturan glass by femtosecond laser-induced modification was developed. This technique was followed by heat treatment to crystallize the modified area, and the specimen was then placed in an 8% HF acid solution for chemical etching. The fabricated microstructures were observed using scanning electron microscopy (SEM). The results demonstrated that the etching time is an important parameter in the fabrication of microstructures on Foturan glass. An example of a tapered U-shaped microchannel with a minimized neck diameter of about 5 μm at the central point for cell detection is presented.  相似文献   

10.
Shakhov  A. M.  Astafiev  A. A.  Nadtochenko  V. A. 《JETP Letters》2019,109(5):292-297
JETP Letters - Processes occurring at nanostructuring of glass irradiated by tightly focused single femtosecond laser pulses with selective chemical etching in the alkaline solution have been...  相似文献   

11.
Ho S  Haque M  Herman PR  Aitchison JS 《Optics letters》2012,37(10):1682-1684
Three-dimensional inverted-woodpile (WP) structures were embedded in a microchannel by femtosecond laser direct-writing of fused silica followed by chemical etching with diluted hydrofluoric acid. We show the hole size is linearly dependent on laser-scanning depth for various pulse energies, permitting the control of laser exposures to facilitate close 5 μm periodic packing of uniform microcapillary arrays. Exposure compensation for depth-dependent etching rate and optical beam aberrations yielded stable and crack-free uniform inverted-WP structures. The direct formation of the inverted-WP structure together with microchannels in an all-fused silica substrate, offers chemical stability and inertness, and biocompatibility to be exploited as new microfluidic systems for chromatography and electro-osmotic pumps.  相似文献   

12.
A new technology for rapid prototyping of lab-on-chip devices is described. Direct write of a near-infrared femtosecond laser forms three-dimensional (3D) latent images inside photostructurable glass. Modified regions are developed by a post-annealing and then preferentially etched away in dilute hydrofluoric acid solution with an etching selectivity of 40–50 times, resulting in the formation of true 3D hollow microstructures inside the glass. Microfluidic structures with microcells and microchannels embedded in the glass are fabricated by this technique. PACS 42.62.-b; 47.85.Np; 81.05.Kf  相似文献   

13.
Femtosecond lasers have opened up new avenues in materials processing due to their unique characteristics of ultrashort pulse widths and extremely high peak intensities. One of the most important features of femtosecond laser processing is that a femtosecond laser beam can induce strong absorption in even transparent materials due to nonlinear multiphoton absorption. This makes it possible to directly create three-dimensional (3D) microfluidic structures in glass that are of great use for fabrication of biochips. For fabrication of the 3D microfluidic structures, two technical approaches are being attempted. One of them employs femtosecond laser-induced internal modification of glass followed by wet chemical etching using an acid solution (Femtosecond laser-assisted wet chemical etching), while the other one performs femtosecond laser 3D ablation of the glass in distilled water (liquid-assisted femtosecond laser drilling). This paper provides a review on these two techniques for fabrication of 3D micro and nanofluidic structures in glass based on our development and experimental results.  相似文献   

14.
We present a new fabrication technique to produce three-dimensional (3D) microstructures on crystalline substrate using selective ion implantation and chemical etching. Localized lattice-damage layers at the specified depth beneath the substrate surface are formed by selective ion implantation. After etching out the partial surface regions and the buried lattice-damage layers by chemical etching, the 3D crystalline microstructures are produced. This technique is demonstrated on LiNbO3 crystal to produce undercutting and free-standing microstructures, including microwire, microring, and microdisk. The measurement results of micro-Raman spectra show that the used fabrication process does not affect the original crystalline structure. The features of this technique include smooth structure surface, large undercutting range, and auto-etching stop. By using multiple implantations or repeating the proposed process several times, versatile 3D crystalline microstructures can be produced.  相似文献   

15.
A mechanism of surface flattening is proposed based on our original mathematical model of surface development by introducing a protrusion-selective etching process which has been demonstrated by the optical near-field assisted chemical etching of glass substrate. We study various mechanisms of surface development due to etching processes depending on the local curvature of substrate and explain that the nature of optical near-field showing the stronger field–matter coupling and associated field enhancement near a sharper protrusion is essential for the flattening property.  相似文献   

16.
The formation of damage tracks in insulators from the passage of energetic (MeV/amu) ions indicates that the energy lost by an ion to electronic excitation is partially transferred to atomic motion. It is known that a track consists of localized regions of extended defects that are separated by lengths that exhibit only point defects. The utility of tracks for selective detection of various types of ions arises because of preferential chemical etching along the track as compared to etching the bulk material. In this letter we propose a new model to explain both the localized damage regions and the preferential etching of damage tracks. The formation of each region of extended defects is initiated by the Auger decay of a vacancy produced in an inner electronic shell of an atom of the insulator by the incident ion. This decay produces an intense source of ionization within a small volume around the decaying atom, which causes decomposition of the material in a manner similar to that observed in pulsed laser irradiation. The resulting chemical or crystalline modification of the material is the latent track, which because of its changed structure can be preferentially etched.  相似文献   

17.
A femtosecond laser beam focused inside fused silica and other glasses can modify the refractive index of the glass. Chemical etching and atomic-force microscope studies show that the modified region can have a sharp-tipped cone-shaped structure with a tip diameter as small as 100 nm. Placing the structure near the bottom surface of a silica glass sample and applying a selective chemical etch to the bottom surface produces clean, circular, submicrometer-diameter holes. Holes spaced as close to one another as 1.4 microm are demonstrated.  相似文献   

18.
In quartz crystal substrates, microchannels were made by femtosecond laser assisted etching, i.e., irradiation of focused femtosecond laser pulses followed by wet etching. By the use of wet etching, the laser irradiated region was selectively etched out, and a microchannel was formed inside the quartz substrate. The laser irradiated region was found to be amorphous by transmission electron microscopy. Anisotropy in the etching rate inside the quartz was observed. PACS 42.70.Ce; 61.80.Ba; 82.50.-m  相似文献   

19.
We have used ordered anodic alumina membranes as masks to create large scale ordered arrays of either holes or chemical islands on silica. Regularly spaced holes were obtained by direct etching of silica/silicon or glass substrates through the membranes used as etching masks. To create an array of chemically functional islands, the membrane is first glued on the substrate using a soft polymer and subsequently the polymer is etched gently though the mask. Finally organo-silane molecules are deposited through the alumina/polymer hybrid mask and the mask is removed chemically leaving nanoislands on the substrate. We anticipate that this technique will be useful in future biological and biomedical applications.  相似文献   

20.
Wang MR  Su H 《Optics letters》1998,23(11):876-878
A new technique of laser-assisted single-step chemical etching for diffractive microlens fabrication upon high-energy-beam sensitive glass is reported. Laser direct writing with calibrated writing parameters results in gray-level mask patterns upon the ion-exchanged layer of the glass. The transmittance-dependent chemical etching upon the glass is then effectively utilized to yield suitable surface relief structures for multiple-phase-level diffractive optical elements. The one-step nonphotolithographic fabrication technique has been successfully applied for the realization of an eight-phase-level diffractive microlens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号