首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Superhydrophobic thin films were prepared on glass by air-brushing the in situ polymerization compositions of D5/SiO2. The wettability and morphology were investigated by contact angle measurement and scanning electron microscopy. The most superhydrophobic samples prepared had a static water contact angle of 157° for a 5 μl droplet and a sliding angle of ∼1° for 10 μl droplet. Thermal stability analysis showed that the surface maintained superhydrophobic at temperature up to 450 °C. Air trapping and capillary force on superhydrophobic behavior were evaluated.  相似文献   

2.
The effectiveness of improving the wettability of HDPE powders within less than 0.1 s by plasma surface modification in a Plasma Downer Reactor is investigated. A correlation is revealed between the XPS results (O/C-ratio) and the wettability (contact angle, polar surface tension by capillary rise method). The O2-content in the plasma feed gas has been adjusted for best wettability properties. XPS results indicate the formation of CO and COOH functional groups on the powder surface. The O/C-ratio increased from 0.0 (no oxygen on the non-treated powder) up to 0.15 for the plasma treated HDPE powder surface. With pure O2-plasma treatment, a water contact angle reduction from >90° (no water penetration into the untreated PE powder) down to 65° was achieved. The total surface free energy increased from 31.2 to 45 mN/m. Ageing of treated powders occurs and proceeds mostly within the first 7 days of storage. Contact angle measurements and O1s/O2s intensity ratio data support that ageing is mainly a diffusion-controlled process. Nevertheless, XPS results show the presence of oxygen functional groups even after 40 days, which explains why the powder is still dispersible in water without any addition of surfactants.  相似文献   

3.
Superhydrophobic surfaces based on dandelion-like ZnO microspheres   总被引:1,自引:0,他引:1  
This study presents a simple method to fabricate superhydrophobic surface based on ZnO nanoneedles. ZnO nanoneedles had been constructed on zinc layers by immersing in an aqueous NH4OH solution at 80 °C. The ZnO films were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The ZnO films exhibited excellent superhydrophilicity (contact angle for water was 0°), while they changed wettability to superhydrophobicity with a water contact angle greater than 150° after further chemical modification with n-dodecanoic acid. The procedure reported here only needs readily available reagents and laboratory equipments, which can be applied to various substrates of any size and shape.  相似文献   

4.
Superhydrophobic functionalized cupric hydroxide (Cu(OH)2) nanotube arrays were prepared on copper foils via a facile alkali assistant surface oxidation technique. Thus nanotube arrays of Cu(OH)2 were directly fabricated on the surface of copper foil by immersing in an aqueous solution of NaOH and (NH4)2S2O8. The wettability of the surface was changed from surperhydrophilicity to superhydrophobicity by chemical modification with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS). The morphologies, microstructures, crystal structure, chemical compositions and states, and hydrophobicity of the films on the copper foil substrates were analyzed by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. It was found that the rough structure of the surface helped to magnify the wettability. The static contact angle (CA) for water is larger than 160° and the contact angle hysteresis (CAH) is lower than 5° on the modified surface. The high roughness of the nanotube arrays along with the generated C-F chains by chemical modification contributed to the improved superhydrophobicity. The present research is expected to be significant in providing a new strategy for the preparation of novel multifunctional materials with potential industrial applications on copper substrates.  相似文献   

5.
Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155° and low contact angle hysteresis (<8°). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.  相似文献   

6.
A superhydrophobic complex coating for cotton fabrics based on silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent (PFSC) was reported in this article. The complex thin film was prepared through a sol-gel process using cotton fabrics as a substrate. Silica nanoparticles in the coating made the textile surface much rougher, and perfluorooctylated quaternary ammonium silane coupling agent on the top layer of the surface lowered the surface free energy. Textiles coated with this coating showed excellent water repellent property, and water contact angle (CA) increased from 133° on cotton fabrics treated with pure PFSC without silica sol pretreatment up to 145°. The oil repellency was also improved and the contact angle of CH2I2 droplet on the fabric surface reached to 131°. In contrast, the contact angle of CH2I2 on the fabric surface treated with pure PFSC was only 125°.  相似文献   

7.
Preparation and properties of super-hydrophobic coating on magnesium alloy   总被引:3,自引:0,他引:3  
The super-hydrophobic coating was successfully fabricated on the surface of magnesium alloy AZ31 by chemical etching and surface modification. The surface morphologies, compositions, wettability and corrosion resistance of the coating were investigated with SEM, XPS, contact angle measurement and electrochemical method, respectively. It shows that the rough and porous micro-nano-structure was presented on the surface of magnesium alloy, and the contact angle could reach up to 157.3 ± 0.5° with sliding angle smaller than 10°. The super-hydrophobic coating showed a long service life. The results of electrochemical measurements showed that anticorrosion property of magnesium alloy was improved. The super-hydrophobic phenomenon of the prepared surface was analyzed with Cassie theory, and it finds that only about 10% of the water surface is contacted with the metal substrate and the rest 90% is contacted with the air cushion.  相似文献   

8.
Control on the wettability of solid materials by liquid is a classical and key issue in surface engineering. Optically transparent water-repellent silica films have been spin-deposited on glass substrates at room temperature (∼27 °C). The wetting behavior of silica films was controlled by surface silylation method using dimethylchlorosilane (DMCS) as a silylating reagent. A coating sol was prepared by keeping the molar ratio of methyltrimethoxysilane (MTMS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:8.8:2.64 respectively, with 4 M NH4OH as a catalyst throughout the experiments and the amount of DMCS in hexane was varied from 0 to 12 vol.%. It was found that with an increase in vol.% of DMCS, the water contact angle values of the films increased from 78° to 136°. At 12 vol.% of DMCS, the film shows static water contact angle as high as 136° and water sliding angle as low as 18°. The hydrophobic silica films retained their water repellency up to a temperature 295 °C and above this temperature the films show superhydrophilic behavior. These results are compared with our earlier research work done on silylation of silica surface using hexamethyldisilazane (HMDZ) and trimethylchlorosilane (TMCS). The hydrophobic silica films were characterized by taking into consideration the Fourier transform infrared (FT-IR) spectroscopy, thermo gravimetric-differential thermal (TG-DT) analyses, scanning electron microscopy (SEM), atomic force microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.  相似文献   

9.
Super-hydrophobic nickel films were prepared by a simple and low cost electrodepositing method. The surface morphologies of the films characterized by scanning electronic microscope exhibit hierarchical structure with micro-nanocones array, which can be responsible for their super-hydrophobic characteristic (water contact angle over 150°) without chemical modification. The wettability of the film can be varied from super-hydrophobic (water contact angle 154°) to relatively hydrophilic (water contact angle 87°) by controlling the size of the micro-nanocones. The mechanism of the hydrophobic characteristic of nickel films with this unique structure was illustrated by several models. Such micro-nanostructure and its special wettability are expected to be applied in the practical industry.  相似文献   

10.
Y. Zhou  X. Song  E. Li  G. Li  S. Zhao  H. Yan 《Applied Surface Science》2006,253(5):2690-2694
Control of wettability is of significance in industry as well as our daily live. Amorphous carbon (a-C) films with nanostructured surface were deposited on silicon and glass substrates at different substrate temperatures through a magnetron sputtering technique. The microstructures of the a-C films were studied by SEM and XPS, which indicate that the surface of the a-C films deposited at room temperature are smooth due to their much dense sp3-bonded carbon, while they turn to be more porous graphite-like structure with elevated deposition temperature. The water contact angle (CA) measurements show that these pure carbon films exhibit different wettability, ranging from hydrophilicity with CA less than 40° to super-hydrophobicity with CA of 152°, which reveal that the surface wettability of a-C films can be controlled well by using nanostructures with various geometrical and carbon state features. The graphite-like carbon film deposited at 400 °C without any modification exhibits super-hydrophobic properties, due to the combining microstructures of spheres with nanostructures of protuberances and interstitials. It may have great significance on the study of wettability and relevant applications.  相似文献   

11.
An attempt was made to study the effect of plasma surface activation on the adhesion of UV-curable sol-gel coatings on polycarbonate (PC) and polymethylmethacrylate (PMMA) substrates. The sol was synthesized by the hydrolysis and condensation of a UV-curable silane in combination with Zr-n-propoxide. Coatings deposited by dip coating were cured using UV-radiation followed by thermal curing between 80 °C and 130 °C. The effect of plasma surface treatment on the wettability of the polymer surface prior to coating deposition was followed up by measuring the water contact angle. The water contact angle on the surface of as-cleaned substrates was 80° ± 2° and that after plasma treatment was 43° ± 1° and 50° ± 2° for PC and PMMA respectively. Adhesion as well as mechanical properties like scratch resistance and taber abrasion resistance were evaluated for coatings deposited over plasma treated and untreated surfaces.  相似文献   

12.
Bi Xu 《Applied Surface Science》2008,254(18):5899-5904
A superhydrophobic ZnO nanorod array film on cotton substrate was fabricated via a wet chemical route and subsequent modification with a layer of n-dodecyltrimethoxysilane (DTMS). The as-obtained cotton sample was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), scanning probe microscope (SPM) and X-ray photoelectron spectroscopy (XPS), respectively. The wettability of the cotton fabric sample was also studied by contact angle measurements. The modified cotton fabrics exhibited superhydrophobicity with a contact angle of 161° for 8 μL water droplet and a roll-off angle of 9° for 40 μL water droplet. It was shown that the proper surface roughness and the lower surface energy both played important roles in creating the superhydrophobic surface, in which the Cassie state dominated.  相似文献   

13.
Non-wettable surfaces with high contact angles and facile sliding angle of water droplets have received tremendous attention in recent years. The present paper describes the room temperature (∼27 °C) synthesis of dip coated water repellent silica coatings on glass substrates using iso-butyltrimethoxysilane (iso-BTMS) as a co-precursor. Emphasis is given to the influence of the hydrophobic reagent (iso-BTMS) on the water repellent properties of the silica films. Silica sol was prepared by keeping the molar ratio of tetraethoxysilane (TEOS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:16.53:8.26 respectively, with 0.01 M NH4F throughout the experiment and the molar ratio of iso-BTMS/TEOS (M) was varied from 0 to 0.965. The effect of M on the surface structure and hydrophobicity has been researched. The static water contact angle values of the silica films increased from 65° to 140° and water sliding angle values decreased from 42° to 16° with an increase in the M value from 0 to 0.965. The water repellent silica films are thermally stable up to a temperature of 280 °C and above this temperature the film shows hydrophilic behavior. The water repellent silica films were characterized by the Fourier Transform Infrared (FT-IR) Spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.  相似文献   

14.
Titanium dioxide (TiO2) films were fabricated on fluorine doped tin oxide (FTO) coated glass substrate using successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction, scanning electron microscopy, transmission electron microscopy, optical absorption and contact angle measurement were applied to study the structural, surface morphological, optical and surface wettability properties of the as-deposited and annealed TiO2 films. The X-ray diffraction studies revealed both as-deposited and annealed TiO2 films are amorphous. Irregular shaped spherical grains of random size and well covered to the fluorine doped tin oxide coated glass substrates were observed from SEM studies with some cracks after annealing. The optical band gap values of virgin TiO2, annealed, methyl violet and rose bengal sensitized TiO2 were found to be 3.6, 3.5, 2.87 and 2.95 eV, respectively. Surface wettability studied in contact with liquid interface, showed hydrophobic nature as water contact angles were greater than 90°. The adsorption of dyes, as confirmed by the photographs, is one of the prime requirements for dye sensitized solar cells (DSSC).  相似文献   

15.
Superhydrophobic surface was prepared by sol-gel method on aluminum substrate via immersing the clean pure aluminum substrate into the solution of zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetraamine (C6H12N4) at different molar ratios and unchanged 0.04 mol/L total concentration, then heated at 95 °C in water bath for 1.5 h, subsequently modified with 18 alkanethiols or stearic acid. When the molar ratios of Zn(NO3)2·6H2O and C6H12N4 were changed from 10:1 to 1:1 the contact angle was higher than 150°. The best prepared surface had a high water contact angle of about 154.8°, as well as low angle hysteresis of about 3°. The surface of prepared films using Zn(NO3)2·6H2O and C6H12N4 composed of ZnO and Zn-Al LDH, and Al. SEM images of the film showed that the resulting surface exhibits different flower-shaped wurtzite zinc oxide microstructure and porous Zn-Al LDH. The special flowerlike and porous architecture, along with the low surface energy leads to the surface superhydrophobicity.  相似文献   

16.
The grafting of acrylic acid (AA) monomer (CH2CHCOOH) on polyamide 6.6 monofilaments (PA 6.6) using benzoyl peroxide (BPO) as initiator was carried out in order to enhance the hydrophilic nature of fibers. The grafting rate depends on the AA concentration, the BPO concentration, the time and the temperature of reaction.The best conditions for optimum rate of grafting were obtained with a AA concentration of 0.5 M, a BPO concentration of 0.03 M, a reaction temperature of T = 85 °C and a reaction time of 120 mn.The fiber surface has been investigated by many experimental techniques of characterization such as Fourier transform infrared spectroscopy (FTIR), calorimetric analysis (DSC), scanning electron microscopy (SEM), and contact angle measurements.The effect of grafting of acrylic acid onto PA 6.6 fibers on their moisture and mechanical resistances was analyzed from water sorption and elongation at break measurements.The analysis of the experimental data shows clearly the efficiency of the grafting reaction used, leading to a significant increase of the hydrophilic character of the PA 6.6 surface.  相似文献   

17.
The adsorption of water on the hydrogen terminated Si(1 1 1) surface is studied by means of first-principles calculations as well as contact angle measurements. Possible initial adsorption configurations for single water molecules and the potential energy surface are calculated. Only small adsorption energies of the order of meV are predicted. Calculations for higher coverage show that the water-water interactions are stronger than the water-surface bonding. The contact angle formed between a water droplet on the surface approximated from the total-energy calculations amounts to 88°, while our measured value is 91°.  相似文献   

18.
High hydrophilic/hydrophobic contrast surfaces on polyethylene terephthalate (PET) substrates were formed by shadow mask technique in electron cyclotron resonance generated sulfur hexafluoride plasma atmosphere. The X-ray photoelectron spectroscopy (XPS) analyses indicate that the unmasked PET surfaces contained a high proportion of the CF2-CF2 groups, and therefore were hydrophobic with large water contact angle. However, the surface wettability was found to increase drastically on the masked PET surfaces. This could be resulted from a mass of COF (acid fluoride) compounds observed by XPS on the masked film surfaces. The COF compounds could react with atmospheric moisture to form -COOH groups, which in turn increased the surface wettability. In addition, the surface wetting property of the masked areas was found to change significantly with the plasma treatment time, the mask-to-substrate distance and the storage time after the treatment. The best contract in water contact angle obtained from the treated PET samples was larger than 100° after 168 h of storage.  相似文献   

19.
The water contact angle (WCA) of nanocrystalline TiO2 films was adjusted by fluoroalkylsilane (FAS) modification and photocatalytic lithography. FAS modification made the surface hydrophobic with the WCA up to ∼156°, while ultraviolet (UV) irradiation changed surface to hydrophilic with the WCA down to ∼0°. Both the hydrophobicity and hydrophilicity were enhanced by surface roughness. The wettability can be tailored by varying the concentration of FAS solution and soaking time, as well as the UV light intensity and irradiation time. Additionally, with the help of photomasks, hydrophobic-hydrophilic micropatterns can be fabricated and manifested via area-selective deposition of polystyrene particles.  相似文献   

20.
Dense and well-oriented rutile TiO2 nanorod arrays were synthesized on a titanium substrate using the organic compound dibutyltin dilaurate as the oxygen source in the oxidation of Ti at 850 °C. The influence of temperature on the nanostructured TiO2 formation and the effect of the TiO2 structures on their wettability were also investigated. Polycrystalline TiO2 grains were formed at 800 °C; in contrast, TiO2 micro-whiskers were grown on the Ti substrate at 900 °C. The measurement of the water contact angle shows that the wetting property of the TiO2 films strongly depends on their surface structure. The surface of the dense well-oriented nanorod arrays is highly hydrophobic with a water contact angle of 130 °C. This study has demonstrated that the direct oxidation of Ti substrate using an organic oxygen source is a promising method for fabrication of large scale, uniform and well-aligned TiO2 nanorod arrays on titanium substrates. PACS 81.16.-Be; 81.20.ka; 82.4c.Cc; 68.37.Hk  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号