首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigation of the quantum dot infrared photodetectors dark current   总被引:1,自引:0,他引:1  
Quantum dot infrared photodetectors (QDIPs) are more efficient than other types of semiconductor based photodetectors; so it has become an actively developed field of research. In this paper quantum dot infrared photodetector dark current is evaluated theoretically. This evaluation is based on the model that was developed by Ryzhii et al. Here it is assumed that both thermionic emission and field-assisted tunneling mechanisms determine the dark current of QDIPs; moreover we have considered Richardson effect, which has not been taken into account in previous research. Then a new formula for estimating average number of electrons in a quantum dot infrared photodetector is derived. Considering the Richardson effect and field-assisted tunneling mechanisms in the dark current improves the accuracy of algorithm and causes the theoretical data to fit better in the experiment. The QDIPs dark current temperature and biasing voltage dependency, contribution of thermionic emission and field-assisted tunneling at various temperatures and biasing voltage in the QDIPs dark current are investigated. Moreover, the other parameter effects like quantum dot (QD) density and QD size effect on the QDIPs dark current are investigated.  相似文献   

2.
Quantum dot infrared photodetectors (QDIPs) have many advantages over other types of semiconductor-based photodetectors. However some of its characteristics have been investigated theoretically, there are many unstudied points. In this paper a new approach is presented to evaluate quantum dot infrared photodetectors dark current and photocurrent. In this study, it is assumed that both thermionic emission and field-assisted tunneling mechanisms determine the dark current of quantum dot detectors. Based on these assumptions, new formula for average number of electron in a quantum dot for both, dark and illumination condition is calculated, which is more accurate than the previous reported formulas; because in deriving previous reported formulas, it was assumed only thermionic emission determines dark current but field-assisted tunneling mechanisms has not been considered. Then numerical method is used to calculate the average number of electron in a quantum dot and to determine dark current and photocurrent. The theoretical results are compared with experimental data. They have good agreement with available experimental data.  相似文献   

3.
In this work we propose new detector designs, which allow achieving mid-infrared photovoltaic (PV) detection at temperatures as high as 180 K. The devices, which are grown by molecular beam epitaxy, are modulation-doped (MD) double barrier quantum well infrared photodetectors (QWIPs) based on AlGaAs/AlAs/GaAs. As the photocurrent spectra and IV characteristics (in the dark and under infrared illumination) show that the dopant location is a relevant design parameter regarding the performance of PV QWIPs, we begin our work with a comparison of the performance of a set of MD samples (where we have varied the dopant location in the AlGaAs barriers) with respect to a well-doped sample of nominally the same structure. We find that the responsivity and detectivity of the MD devices seem to be higher than those of the well-doped detector, specially when the dopant is located in the substrate-sided barrier. Then, in order to improve the dark current-limited performance, we designed a new set of substrated-sided MD detectors that exhibit an extremely low dark current, even at high temperatures, otherwise no drop in the zero bias peak responsivity. Therefore, the association of the notable PV signal detection in the 3–5 μm range of these MD detectors together with the dark current reduction of the new structures has allowed us to achieve a 140 K zero bias peak responsivity of 0.015 A/W and a 180 K zero bias peak responsivity of 0.01 A/W at 4.4 μm.  相似文献   

4.
A quantum mechanical approach is taken to investigate the contribution of sequential tunnelling as a component of the dark current in quantum well infrared photodetectors (QWIPs). Calculations are performed on three different experimentally reported QWIP devices made for different detection wavelengths. The results show that the sequential tunnelling component remains rather constant with different devices, however it is swamped by the thermionic emission components of the dark current at longer wavelengths. The lack of a local maximum in the dark current due to resonant LO phonon emission, which should be observed at short wavelengths, suggests that interface roughness and alloy disorder could be destroying the coherence of the electron wavefunctions between quantum wells.  相似文献   

5.
与瑞士保罗希尔研究所合作,在双方合作开发的通用加速器模拟程序库OPAL中添加了3维复杂几何处理模块及场致发射与二次电子发射模块,使得OPAL具备了进行3维复杂结构中场致发射与二次电子倍增效应模拟的能力,可用于优化复杂高频/微波器件的结构设计从而抑制暗电流发射或二次电子倍增效应。  相似文献   

6.
A novel two color infrared (IR) device that allows fast electrical switching between the short wavelength IR (SWIR) band (0.9–1.6 μm) and the long wavelength IR (LWIR) band (8–12 μm) is presented. The integrated sensor is based on MOCVD grown, lattice matched (to InP substrate) epilayers of InGaAs/InP and consists of two, monolithically integrated sections of heterojunction bipolar transistor (HBT) and quantum well infrared photodetector (QWIP).  相似文献   

7.
Diffusion of dysprosium on the (1 1 1) facet of a tungsten micromonocrystal was investigated by means of spectral analysis of field emission current fluctuations. The experimental spectral density functions of the current fluctuations were analysed by using Gesley and Swanson’s theoretical spectral density function, which enables to determine the surface diffusion coefficient D for dysprosium. Derived from the temperature dependence of D, the diffusion activation energy E is presented for some Dy coverages θ(1 1 1). In the temperature range 400–600 K, the E first drops from 1.25 eV per atom at θ(111)≈0.25 ML to 0.48 eV per atom at θ(111)≈1 ML (corresponding to the minimum of the work function of the system), then increases to 1.03 eV per atom at θ(111)≈1.3 ML. The results are discussed from the aspects of the substrate structure and interaction in the adsorbed layer.  相似文献   

8.
The Heck coupling of 9,9-dihexyl-2,7-divinylfluorene with 1,4-dibromobenzene and 4,4′-dibromobiphenyl afforded the alternating polyfluorenevinylenes P1 and P2, respectively. P2 showed lower solubility in common organic solvents, higher thermal stability and slightly higher glass transition temperature than P1. The polymers absorbed around 400 nm, and their optical band gaps were 2.77–2.82 eV. They emitted blue-green light in both solution (emission maximum 451–464 nm, quantum yield 0.52–0.54) and thin film (emission maximum 462–474 nm).  相似文献   

9.
Chemical vapor deposited (CVD) carbon nanotube (CNT) arrays were immersed in ethanol to make shrunk structures with separate nanotube “walls” for better field emission properties, such structures decreased the screening effects and reduced the turn-on electric field at 10 μA/cm2 from 1.68 to 1.23 V/μm. The field enhancement factor was calculated to increase by 23% according to Fowler–Nordheim (F–N) equation. The number of emission sites also increased and their distribution was more uniform.  相似文献   

10.
Aspects of the red thermoluminescence (RTL) and IR (833±5 nm) stimulated red (λemission=600–750 nm) luminescence (orange-red IRSL) of potassium feldspar from different origins are described. Anomalous fading of RTL (300–500°C) from a selection of potassium feldspar samples was tested. High temperature RTL (300–450°C) exhibits less anomalous fading in comparison to UV luminescence, for the samples under study. The result supports the contention of Zink and Visocekas (1997) that the red TL emission from feldspar does not fade. It was found that RTL is bleachable due to IR exposure, and the relationship between RTL lost and orange-red IRSL produced is linear. It is shown that around one third of the trapped charge responsible for the orange-red IRSL signal gives rise to an RTL signal, indicating that some traps and luminescence centres are shared for RTL and orange-red IRSL.

Specific characteristics of orange-red IRSL from feldspar were identified. It was found that the orange-red IRSL decay curve is bleachable by IR and daylight and can be described by the sum of three exponential components. Orange-red IRSL fading was tested. Short-term storage tests (up to 2 weeks) showed no fading. Longer-term (ca. months) storage of orange-red IRSL do in fact indicate fading, though at levels considerably lower than for the UV emission. The contradictory result is possibly due to the detection wavelength. As such, it is highly likely that the long-term fading experiment is strongly influenced by the feldspar emission centred at ca. 570 nm, which exhibits anomalous fading, while the short-term fading experiment is more greatly influenced by the far red emission centred at ca. 710 nm that in comparison to UV emission shows no or less fading.  相似文献   


11.
Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.  相似文献   

12.
New materials based on low-generation polyphenylene dendrimers with the light emission in the blue spectrum range were synthesized and examined for an efficient organic light emitting diodes (OLED) application. It has been shown that the ratio of p-phenylene groups with high fluorescence parameters to 1,3,5-triphenylbenzene groups with low fluorescent parameters may be the possible reason for the experimental variations of relative quantum yield of photoluminescence in the compounds explored. The quantum yield value is increased with a number of dendrimer generations up to 50–70%. The role of bromine atoms as the luminescence quenchers have been demonstrated, which is important for synthesis route choice.  相似文献   

13.
14.
We study theoretically the excitonic emission properties of a hybrid nanosystem composed of a spherical metal nanoparticle (NP) and a spherical quantum dot (QD). We show that electromagnetic field (EMF) emitted by a single QD has only dipole, quadrupole, and octupole components, i.e., QD cannot in principle be regarded as an oscillating point dipole, which emits infinite series of multipoles. This leads to a substantial deviation of the characteristics of QD excitonic emission from the emission characteristics of point dipole (molecular fluorophore) located in a vicinity of metal NP at small interparticle distances. The observed fluorescence spectra of the CdTe QD/Ag NP nanostructure are found to be in good agreement with the calculated ones.  相似文献   

15.
We investigate the spontaneous emission spectra of a four-level tripod-type atom embedded in a photonic crystal and driven by two coherent fields. It is found that due to the quantum interference caused by two driving fields, the spontaneous emission spectra have different features from the case of only one driving field. The spectra are sensitively dependent on the detuning of the driving fields. A dark line occurs for some particular initial states. By appropriately adjusting the external driving fields, the spectral-line can be narrowed, enhanced or suppressed.  相似文献   

16.
Enhanced field emission of electrons from silicon surfaces was obtained by surface microstructuring, by means of electrochemical oxidation in organic solutions containing HF. Morphological characterisations showed the formation of cylindrical rods, randomly distributed with relative spacing of a few microns. They are originated at the top of silicon pyramids and have typical diameter in the 100 nm range. Variable length in the 1–50 μm range was obtained, by adjusting the process parameters. Electron field emission properties were characterised for several samples, prepared in different conditions: the emission threshold was found to be strongly correlated with the overall charge exchanged during electrochemical oxidation. In the most favourable conditions, the threshold field for the emission of an electron current Ith = 10−10 A was 11.1 V/μm.  相似文献   

17.
The time evaluation of quantum entropy in a four-level N-type atomic system is theoretically investigated. Quantum entanglement of the atom and its spontaneous emission fields is then discussed via quantum entropy. It is found that the degree of entanglement can be increased by the quantum interference induced by spontaneous emission. The phase dependence of the atom-field entanglement is also presented.  相似文献   

18.
We study the dark current of the GaAs/AlGaAs quantum-well infrared photodetector (QWIP) by assuming a drift-diffusion carrier transport in the barriers where the electric fields are obtained by the current continuity condition and the self-consistent energy band structure. It has been shown that due to the current continuity condition, the dark currents across the QWIP devices are determined by the thermionic emission from the emitter to the multiple quantum well (MQW) region. The self-consistent calculation of the Schrödinger and Poisson equations shows a weak electric field in the barrier region connecting to the emitter (much smaller than the average field across the QWIP at low bias) due to the accumulation of carriers in the triangle quantum well formed at the emitter-MQW interface, which results in a very small dark current at low bias. The numerical results explain well our experimental observation.  相似文献   

19.
This paper contains results of experimental studies of the direct current breakdown voltage curves and volt‐ampere characteristics of discharges generated in a system consisting of two plane‐parallel tungsten and molybdenum electrodes at separations from 100 µ m to 1 µ m. The measurements were performed in the pressure range from 22.5 Torr to 738 Torr. The results are presented in the form of Paschen curves. Based on the measured breakdown voltage curves, the effective yields have been estimated in the case of different cathode materials. Differences between them are attributed to the influence of the work function of the cathode material on the current‐voltage characteristics due to field emission effect in small gaps and high pressures. At low‐pressures, however, vaporation of impurities from the electrodes material becomes significant. The present paper delivers new data on DC breakdown under these experimental conditions and conditions on the validity of the Paschen law in helium and provides better insight into the role of the field emission and the electrode materials on the breakdown voltage. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
This paper presents the design, fabrication and characterization of a QWIP photodetector capable of detecting simultaneously infrared radiation within near infrared (NIR), mid wavelength infrared (MWIR) and long wavelength infrared (LWIR). The NIR detection was achieved using interband transition while MWIR and LWIR were based on intersubband transition in the conduction band. The quantum well structure was designed using a computational tool developed to solve self-consistently the Schrödinger–Poisson equation with the help of the shooting method. Intersubband absorption in the sample was measured for the MWIR and LWIR using Fourier transform spectroscopy (FTIR) and the measured peak positions were found at 5.3 μm and 8.7 μm which agree well with the theoretical values obtained 5.0 μm and 9.0 μm for the two infrared bands which indicates the accuracy of the self-consistent model. The photodetectors were fabricated using a standard photolithography process with exposed middle contacts to allow separate bias and readout of signals from the three wavelength bands. The measured photoresponse gave three peaks at 0.84 μm, 5.0 μm and 8.5 μm wavelengths with approximately 0.5 A/W, 0.03 A/W and 0.13 A/W peak responsivities for NIR, MWIR and LWIR bands, respectively. This work demonstrates the possibility of detection of widely separated wavelength bands using interband and intersubband transitions in quantum wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号