首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZnS nanorods were fabricated by annealing precursor ZnS nanoparticles, which were prepared by one-step, solid-state reaction of ZnCl2 and Na2S through grinding by hand at ambient temperature, in NaCl flux. The as-prepared ZnS nanorods have diameters of 40-80 nm, and lengths up to several micrometers. The structural features and chemical composition of the nanorods were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), and Raman spectra.  相似文献   

2.
Nb2O5 nanorods have been prepared using water/ethanol media. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible absorption and photoluminescence spectroscopy. The as-prepared Nb2O5 nanorods appeared to be single pseudohexagonal (TT-Nb2O5) phase. From the photoluminescence spectrum, two emission bands at 407 and 496 nm, respectively, were observed. The origin of the luminescence was discussed in detail.  相似文献   

3.
ZnO nanorod arrays were synthesized by chemical-liquid deposition techniques on MgxZn1−xO (x = 0, 0.07 and 0.15) buffer layers. It is found that varying the Mg concentration could control the diameter, vertical alignment, crystallization, and density of the ZnO nanorods. The X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) data show the ZnO nanorods prefer to grow in the (0 0 2) c-axis direction better with a larger Mg concentration. The photoluminescence (PL) spectra of ZnO nanorods exhibit that the ultraviolet (UV) emission becomes stronger and the defect emission becomes weaker by increasing the Mg concentration in MgxZn1−xO buffer layers.  相似文献   

4.
A novel method was applied to prepare β-Ga2O3 nanorods. In this method, β-Ga2O3 nanorods have been successfully synthesized on Si(1 1 1) substrates through annealing sputtered Ga2O3/Mo films under flowing ammonia at 950 °C in a quartz tube. The as-synthesized nanorods are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). The results show that the nanorod is single-crystalline Ga2O3 with monoclinic structure. The β-Ga2O3 nanorods are straight and smooth with diameters in the range of 200-300 nm and lengths typically up to several micrometers. The growth process of the β-Ga2O3 nanorods is probably dominated by conventional vapor-solid (VS) mechanism.  相似文献   

5.
In this work, we report a simple liquid reduction approach to prepare Cu2O hollow microsphere film and hollow nanosphere powder with Cu(OH)2 nanorods as precursor and ascorbic acid as the reductant at 60 °C. When Cu(OH)2 nanorod array film grown on a copper foil is used as the precursor, Cu2O thin film made up of hollow microspheres with average diameter of 1.2 μm is successfully prepared. When the Cu(OH)2 nanorods are scraped from the copper foil and then used as the precursor, Cu2O hollow nanosphere powder with the average diameter of 270 nm is obtained. The samples are characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and ultraviolet-vis light (UV-vis) absorption spectra. A possible formation mechanism of Cu2O hollow spheres is discussed.  相似文献   

6.
王冰  徐平 《中国物理 B》2009,18(1):324-332
SnO2 nanotwists on thin film and SnO2 short nanowires on nanorods have been grown on single silicon substrates by using Au-Ag alloying catalyst assisted carbothermal evaporation of SnO2 and active carbon powders.The morphology and the structure of the prepared nanostructures are determined on the basis of field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),selected area electronic diffraction(SAED),high-resolution transmission electron microscopy(HRTEM),x-ray diffraction(XRD),Raman and photoluminescence(PL) spectra analysis.The new peaks at 356,450,and 489 nm in the measured PL spectra of two kinds of SnO2 nanostructures are observed,implying that more luminescence centres exist in these SnO2 nanostructures due to nanocrystals and defects.The growth mechanism of these nanostructures belongs to the vapour-liquid-solid(VLS) mechanism.  相似文献   

7.
Tin oxide (SnO2) nanorods were grown by high-pressure pulsed laser deposition (PLD). The nanorods were grown without the use of a catalyst but required high background pressure growth in order to realize small grain columnar growth and nanorod formation, with nanorod formation most favored on non-epitaxial substrates. The structures and morphology were characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). X-ray diffraction and HRTEM analysis indicate that the as-grown SnO2 nanorods are single crystals with a rutile structure. The nanorods are approximately 50–90 nm in diameters and 1.5 μm in length. This method provides an approach for large area synthesis of one dimensional SnO2 nanostructure materials. PACS 81.16.Mk; 61.46.-w; 81.07.-b  相似文献   

8.
GaN nanowires and nanorods have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/V films at 900 °C in a quartz tube. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectrum were carried out to characterize the structure, morphology, and photoluminescence properties of GaN sample. The results show that the GaN nanowires and nanorods with pure hexagonal wurtzite structure have good emission properties. The growth direction of nanostructures is perpendicular to the fringes of (1 0 1) plane. The growth mechanism is also briefly discussed.  相似文献   

9.
CuO-core/ SnO2-shell one-dimensional nanostructures have been fabricated by thermal oxidation of a copper foil and then atomic layer deposition of SnO2. The structure and optical properties of the nanostructures have been investigated by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, photoluminescence (PL) spectroscopy, and energy-dispersive X-ray analysis techniques. The nanostructures are found to have the form of nanorods, with the diameter of the CuO cores being in the range from a few tens to a few hundreds of nanometers, the thickness of the SnO2 shells being ~15 nm, and with a length of a few tens of micrometers. The CuO cores and the SnO2 shells of the as-synthesized nanorods have crystalline monoclinic CuO and amorphous SnO2 structures, respectively, but the SnO2 shells are found to crystallize to tetragonal SnO2 on thermal annealing. The PL emission intensity of the CuO nanorods has been slightly increased by SnO2 coating. The PL emission of the SnO2-coated CuO nanorods is somewhat increased and the emission peak position is red-shifted from 550 to 580 nm by annealing in a reducing atmosphere. On the other hand, the PL emission is significantly increased and the emission peak position is shifted from 550 nm further to around 595 nm by annealing in an oxidative atmosphere. In addition, the origins of the PL enhancements in the nanorods by coating and annealing are discussed.  相似文献   

10.
Single-crystalline SnO2 nanowires with sizes of 4-14 nm in diameter and 100-500 nm in length were produced in a molten salt approach by using hydrothermal synthesized precursor. Structural characters of the nanowires were examined by X-ray diffraction and high-resolution electron transmission microscopy. Raman, photoluminescence and X-ray photoelectron spectra of the samples were examined under heat treatments. Three new Raman modes at 691, 514 and 358 cm−1 were recorded and assigned. The former two are attributed to activation of original Raman-forbidden A2uLO mode and the third is attributed to defects in small-sized nanowires. A strong photoluminescence is observed at about 600 nm, the temperature effects is examined and the origin of the PL process is discussed via X-ray photoelectron spectra.  相似文献   

11.
ZnO nanorods and nanodisks were formed on indium-tin-oxide-coated glass substrates by using an electrochemical deposition method. Scanning electron microscopy images showed that the ZnO nanorods were transformed into nanodisks with increasing Zn(NO3)2 concentration. X-ray diffraction patterns showed that the ZnO nanostructures had wurzite structures. The full widths at half maxima of the near band-edge emission peak of photoluminescence spectra at 300 K for ZnO nanorods were small, indicative of the high quality of the nanorods. These results indicate that the structural and the optical properties of ZnO nanostructures vary by changing Zn(NO3)2 concentration.  相似文献   

12.
Rare earth metal seed Tb was employed as catalyst for the growth of GaN wires. GaN nanowires were synthesized successfully through ammoniating Ga2O3/Tb films sputtered on Si(1 1 1) substrates. The samples characterization by X-ray diffraction and Fourier transform infrared indicated that the nanowires are constituted of hexagonal wurtzite GaN. Scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy showed that the samples are single-crystal GaN nanowire structures. The growth mechanism of the GaN nanowires is discussed.  相似文献   

13.
The unique Bi2Te3 tubes were obtained via a simple solvothermal reaction in the presence of ethylenediaminetetraacetic acid disodium salt. The product was characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Bi2Te3 nanosheets are vertically grown off the tube wall to form Bi2Te3 tubes. A possible formation mechanism is proposed.  相似文献   

14.
SnO2 nanowires were synthesized using a direct gas reaction route and were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), selected-area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and Raman-scattering spectroscopy. XRD, SEM, SAED and HRTEM indicated that the products were tetragonal SnO2 nanowires with diameters of 10–50 nm. The nanowires were single crystal and solid inside. Dendritic nanowires were observed for the first time. Three vibrational modes were observed in the Raman spectra of the samples. Received: 7 January 2002 / Accepted: 11 April 2002 / Published online: 19 July 2002  相似文献   

15.
Porous SnO2 nanoflakes with loose-packed structure were synthesized by calcination of SnS2 precursors that were obtained through solvothermal method at low temperature. The as-obtained SnO2 product had a three-dimensional porous structure with relatively high specific surface area. It was found that the SnO2 nanoflakes inherited the morphology of precursor while numerous pores were formed after the annealing process. The combined techniques of X-ray diffraction, energy-dispersive spectrum, field emission scanning electron microscopy, and (high-resolution) transmission electron microscopy were used for characterization of the as-prepared SnO2 product. Moreover, the porous SnO2 nanoflakes with loose-packed structure could be used as gas sensors for detecting ethanol and acted as anode for lithium ion batteries. Our study shows that the as-prepared SnO2 nanoflakes not only exhibit good response and reversibility to ethanol gas but also display enhanced Li-ion storage capability.  相似文献   

16.
Hierarchical calcium molybdate (CaMoO4) nanostructured microspheres were synthesized via a facile room-temperature route assisted by an ionic liquid, 1-n-butyl-3-methylimidazolium chloride. The product was characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that micro-scaled CaMoO4 powders were assembled by nanoparticles with diameters ranging from 10 to 20 nm. The optical absorbance, photoluminescence emission (PL), and luminescence excitation (PLE) were investigated. The PL spectra excited at 273 nm have a strong green emission band maximum at 511 nm, which is attributed to the charge-transfer transitions within the MoO42− complex, and the luminescence intensity indicated a good luminescence quality of the CaMoO4 materials. By varying the amount of this assisted agent, we found that the ionic liquid played a crucial role as a surfactant in the formation of CaMoO4 materials with uniform hierarchical structure, which may be beneficial to the luminescence performance. This study presented a promising preparation strategy towards other luminescent materials.  相似文献   

17.
Thin films of antimony doped tin oxide (SnO2:Sb) were prepared by spray pyrolysis technique using SnCl2 as precursor with the various antimony doping levels ranging from 1 to 4 wt%. The XRD analysis showed that the undoped SnO2 films grow in (211) preferred orientation whereas the Sb doped films grow in (200) plane. Scanning electron microscopy studies indicated that the surface of the films prepared with lower doping level (1 wt%) consists of larger grains whereas those prepared with higher doping levels (>1 wt%) consist of smaller grains. The sheet resistance has been found to be reduced considerably (2.17 Ω/□) for Sb doped films. To the best of our knowledge this is the lowest sheet resistance obtained for Sb doped SnO2 thin films.  相似文献   

18.
Well-aligned CdS nanotubes have been synthesized within the nanochannels of the porous anodic alumina (PAA) membranes by pyrolyzing cadmium bis(diethyldithiocarbamate) [Cd(S2CNEt2)2] at 400 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the CdS nanotubes are highly ordered with uniform diameter in range of 80-150 nm and the length up to tens of microns. X-ray diffraction (XRD), Raman spectrum, energy-dispersive spectroscopy (EDS) and selected-area electron diffraction (SAED) demonstrate that the nanotubes are composed of pure hexagonal phase polycrystalline CdS. The synthetic route can, in principle, be extended to fabricate other nanotubes of a wide range of semiconductors.  相似文献   

19.
Perovskite strontium stannate (SrSnO3) nanorods were prepared by annealing the precursor SnSr(OH)6 nanorods at 600 °C for 3 h. The precursor nanorods were hydrothermally synthesized at 160 °C for 16 h using Sr(NO3)2 and SnCl4·5H2O as starting materials in the presence of surfactant cetyltrimethyl ammonium bromide (CTAB). As-prepared samples were characterized by X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and infrared ray spectroscopy (IR). The results show that the as-synthesized powders are made of SrSnO3 one-dimensional nanorods of about 0.2-1 μm length and 100-150 nm diameter. Possible formation mechanism of SrSnO3 with nanorod structure under certain conditions was preliminarily analyzed, in which it was thought that CTAB played an important role in the formation process of the nanorod structure. Electrochemical performance of the samples versus Li metal was also evaluated for possible use in lithium-ion batteries.  相似文献   

20.
Tin dioxide (SnO2) nanobelts have been successfully synthesized in bulk quantity by a simple and low-cost process based on the thermal evaporation of tin powders at 800 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations reveal that the nanobelts are uniform, with lengths from several-hundred micrometers to a few millimeters, widths of 60 to 250 nm and thicknesses of 10 to 30 nm. X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and selected-area electron diffraction analysis (SAED) indicate that the nanobelts are tetragonal rutile structure of SnO2. The SnO2 nanobelts grow via a vapor–solid (VS) process. Received: 3 June 2002 / Accepted: 10 June 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: +86-551/559-1434, E-mail: gwmeng@mail.issp.ac.cn  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号