首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Mesoporous silicon (mesoPS) is a nanosponge where Si nanocrystals are interconnected forming a disordered 3D array. The electronic characteristics of this material are particularly interesting, due to some intriguing effects, such as a huge increase of conductivity, reversible insulator-to-metal transition and n- or p-type doping of the nanocrystals, exhibited in presence of donor or acceptor molecules like NH3 and NO2. Here we report on the observation of a sharp conductance gap, which can be ascribed to Coulomb blockade phenomena. Moreover, we show that the width of the gap can be tuned by NO2 molecules, so that the fabrication of highly sensitive threshold sensors is possible. Our results suggest that electrochemical etching of heavily doped Si can be used as a simple self-assembly technique for the production of Si nanocrystal arrays and for the fabrication of sensitive nanosensors.  相似文献   

2.
A method for surface doping and functionalization of ZnO nanowires (NWs) with Pd (Pd/ZnO) in a one‐step process is presented. The main advantage of this method is to combine the simultaneous growth, surface doping, and functionalization of NWs by using electrochemical deposition (ECD) at relatively low temperatures (90 °C). Our approach essentially reduces the number of technological steps of nanomaterial synthesis and final nanodevices fabrication with enhanced performances. A series of nanosensor devices is fabricated based on single Pd/ZnO NWs with a radius of about 80 nm using a FIB/SEM system. The influence of Pd nominal composition in Pd/ZnO NW on the H2 sensing response is studied in detail and a corresponding mechanism is proposed. The results demonstrate an ultra‐high response and selectivity of the synthesized nanosensors to hydrogen gas at room temperature. The optimal concentration of PdCl2 in the electrolyte to achieve extremely sensitive nanodevices with a gas response (SH2) ≈ 1.3 × 104 (at 100 ppm H2 concentration) and relatively high rapidity is 0.75 µM. Theoretical calculations on Pd/ZnO bulk and functionalized surface further validated the experimental hypothesis. Our results demonstrate the importance of noble metal presence on the surface due to doping and functionalization of nanostructures in the fabrication of highly‐sensitive and selective gas nanosensors operating at room temperature with reduced power consumption.  相似文献   

3.
In this paper, a novel strategy with a new growth mechanism for fast and large‐scale growth of Au long nanowires on high‐curvature SiO2 nanospherical surfaces has been developed. The synthesis includes three steps, i.e., amino modification of SiO2 nanospheres, Au seed loading on aminated SiO2 nanospheres and subsequently, Au seed‐mediated nanowire growth on SiO2 nanospheres. The prepared Au nanowires (Au NWs) (exhibit long length, high aspect ratio, and good flexibility, and can naturally form the dense nanowire film, which is promising as a stable conductive electrode. In addition, the effect of synthetic conditions such as reactant feeding order, Au seeds and SiO2@Au seeds on the morphology of Au nanostructures (nanowires, nanoteeth, and nanoflowers) has been investigated. It is found that Au seeds and high‐curvature SiO2 nanospherical surfaces are necessary conditions for the successful preparation of Au NWs and nanowire films. The different growth mechanisms for Au NWs and nanoteeth have been proposed and discussed. Moreover, the novel nonenzymatic H2O2 sensor based on Au NWs exhibits much enhanced performance such as higher sensitivity, stability, and selectivity, wider linear range and lower detection limit, compared with that of Au nanoparticles‐based H2O2 sensor.  相似文献   

4.
By use of the membrane-template synthesis route, MnO2 nanowire arrayed electrodes are successfully synthesized by means of the anodic deposition technique. The Pt nanoparticles composited MnO2 nanowire arrayed electrodes (PME) are obtained through depositing Pt on MnO2 nanowire arrayed electrode by cathode deposition technique. For comparison of electrochemical performance, Pt nanowire arrayed electrodes which have the same amount of Pt with PME are also prepared. The electro-oxidation of methanol on PME and Pt nanowire arrayed electrodes is investigated at room temperature by cyclic voltammetry, which show that about 110 mV decreased overpotential and 2.1-fold enhanced votammetric current are achieved on PME. The chronoamperometry result demonstrates that the resistance to carbon monoxide for PME is improved.  相似文献   

5.
Rusi  C.-K. Sim  S. R. Majid 《Ionics》2017,23(5):1219-1227
Polyaniline (PANI) nanowire electrode was successfully prepared using electrodeposition method. The morphology, thickness, and electrochemical performance of PANI electrode can be controlled by varying the deposition scan rates. Lower deposition scan rate results in compact and aggregates of PANI nanowire morphology. The uniform nanowire of PANI was obtained at the applied scan rate of 100 mV s?1, and it was used as symmetric electrode coupled with H2SO4/polyvinyl alcohol (PVA) gel electrolyte. The different concentrations of H2SO4 acid in polymer electrolyte have influenced the electrochemical performance as well. The optimum specific capacitance and energy density of P100 PANI electrode in 3 M H2SO4/PVA gel polymer electrolyte was 377 F g?1 and 95.4 Wh kg?1 at the scan rate of 1 mV s?1. The good stability of the electrode in this system is applicable to many wearable electronics applications.  相似文献   

6.
One of the great challenges in the development of lithium–oxygen batteries (Li–O2 batteries) is to synthesize cost‐effective and efficient electrocatalysts to overcome several issues such as high charge overpotential and poor cycle life. Here, an efficient method is reported to fabricate a dual component electrocatalyst made of MnO2 nanoparticles supported on 1D Co3O4 nanorods (MnO2–Co3O4), and its electrochemical behavior as a non‐noble metal cathode catalyst is demonstrated in Li–O2 batteries. It is found that the as‐made MnO2–Co3O4 catalyst exhibits an enhanced electrochemical performance, such as increased specific capacity (increase to 4023 mA h g?1 from 2993 mA h g?1), low charge overpotential (reduce 350 mV), high rate performance, and superior cyclability up to 150 cycles. The excellent electrochemical performance is attributed to the synergistic effects of the dual component catalytic system.  相似文献   

7.
In this Letter, we have presented a new approach for the fabrication of nanowire media (wire metamaterials) by electrochemical methods. AIIIBV porous matrices (a host medium) were prepared by anodic electrochemical etching of industrial substrates. The host medium has been filled via electrochemical deposition with a metal and by means of annealing process. We have shown that this technique can be used to fabricate a nanowire medium with unique parameters (such as aspect ratio, high electric permittivity and strong χ(3) nonlinearity near the fundamental absorption edge of the host media). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Nanowires of amorphous SiO2 were synthesized by thermal processing of a Si(100) substrate at 1100 °C in the presence of a nitrogen flow, and using a 15 nm thick high silicon-solubility Pd/Au film as a catalyst. The substrate itself was the only source of silicon for the nanowire growth. The nanostructures produced were characterized by high resolution transmission and scanning electron microscopy and by X-ray diffraction. The nanowire growth is consistent with the vapor-liquid-solid (VLS) mechanism, with particles of Pd2Si and Au(Pd) being observed to form from the reaction between silicon and the catalytic film, and to remain at the tip of the wires. The synthesized nanowires showed a well defined morphology which could be very interesting for lasing applications. PACS 81.05.Ys; 81.10.Bk; 85.40.Ux  相似文献   

9.
Single crystal silicon wafers are widely used as the precursors to prepare silicon nanowires by employing a silver-assisted chemical etching process. In this work, we prepared polycrystalline silicon nanowire arrays by using solar-grade multicrystalline silicon wafers. The chemical composition and bonding on the surface of silicon nanowire arrays were characterized by Fourier Transform Infrared spectroscope, and X-ray photoelectron spectroscope. The photoluminescence spectra of silicon nanowires show red light emissions centered around 700 nm. Due to the passivation effect of Si dangling bonds by concentrated HNO3 aqueous solution, the photoluminescence intensities are improved by 2 times. The influences of surface chemical states on the wettability of silicon nanowire arrays were also studied. We obtained a superhydrophobic surface on the as-etched silicon nanowire arrays without surface modification with any organic low-surface-energy materials, and realized the evolution from superhydrophobicity to superhydrophilicity via surface modifications with HNO3 solutions.  相似文献   

10.
The commissioning and performance characterization of a position‐sensitive detector designed for fast X‐ray powder diffraction experiments on beamline I11 at Diamond Light Source are described. The detecting elements comprise 18 detector‐readout modules of MYTHEN‐II silicon strip technology tiled to provide 90° coverage in 2θ. The modules are located in a rigid housing custom designed at Diamond with control of the device fully integrated into the beamline data acquisition environment. The detector is mounted on the I11 three‐circle powder diffractometer to provide an intrinsic resolution of Δ2θ? 0.004°. The results of commissioning and performance measurements using reference samples (Si and AgI) are presented, along with new results from scientific experiments selected to demonstrate the suitability of this facility for powder diffraction experiments where conventional angle scanning is too slow to capture rapid structural changes. The real‐time dehydrogenation of MgH2, a potential hydrogen storage compound, is investigated along with ultrafast high‐throughput measurements to determine the crystallite quality of different samples of the metastable carbonate phase vaterite (CaCO3) precipitated and stabilized in the presence of amino acid molecules in a biomimetic synthesis process.  相似文献   

11.
A peculiar nanostructure of encapsulation of SnO2/Sn nanoparticles into mesoporous carbon nanowires (CNWs) has been successfully fabricated by a facile strategy and confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution TEM (HRTEM), X‐ray diffraction (XRD), BET, energy‐dispersive X‐ray (EDX) spectrometer, and X‐ray photoelectron spectroscopy (XPS) characterizations. The 1D mesoporous CNWs effectively accommodate the strain of volume change, prevent the aggregation and pulverization of nanostructured SnO2/Sn, and facilitate electron and ion transport throughout the electrode. Moreover, the void space surrounding SnO2/Sn nanoparticles also provides buffer spaces for the volumetric change of SnO2/Sn during cycling, thus resulting in excellent cycling performance as potential anode materials for lithium‐ion batteries. Even after 499 cycles, a reversible capacity of 949.4 mAh g?1 is retained at 800 mA g?1. Its unique architecture should be responsible for the superior electrochemical performance.  相似文献   

12.
《Physics letters. A》2020,384(8):126174
SiO2 nanowires have been successfully synthesized on the surface of the silicon substrate via a thermal evaporation method using SnO2 powders as the catalysts. The final synthesized product was systematically studied by X-ray powder diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM), and electron energy dispersive X-ray (EDX), UV-Visible absorption and photoluminescence (PL) spectroscopy. The results reveal that in the reaction and growth process, the real catalytic effect is Sn and SnOx, and the growth of SiO2 nanowire is most likely controlled by VLS mechanism. The PL spectral results indicate the obtained products have a stable yellow-green emission range. The products have improved performance and can be used in optoelectronic semiconductor devices.  相似文献   

13.
A similar optimized structure, i.e. a near square cross-section shape for outside nanotube and a relative rotation between nanowire and its outside nanotube, is obtained for the transition-metal M13 (M = Fe, Co, Ni) nanowires with the FCC structure encapsulated inside the armchair (8, 8) silicon carbide nanotube [ M13@(8, 8)] . It is also found that the stabilities of M13 nanowires are enhanced by silicon carbide nanotube encapsulation. Although the spin polarization P of each hybrid system is slightly lowered with respect to the corresponding free-standing nanowire, the largest spin polarization value 71% of Co13@(8, 8) among the three hybrid systems suggests it could be utilized to construct efficient spin transport devices. As compared with the corresponding free-standing nanowire, the magnetic moments μ1 and μ2 for the peripheral M1 (especially) and M2 atoms are decreased, while the magnetic moments μ3 and μ4 for the interior M3 and M4 atoms are increased for each M13@(8, 8) hybrid system. In particular, different from the bulk FCC Fe that is antiferromagnetic, the minimum energy magnetic structure of FCC Fe13 free-standing nanowire is ferromagnetic. Furthermore, contrary to the cases of Co13 and Ni13 nanowires, the ferromagnetism is further enhanced after Fe13 nanowire is encapsulated inside (8, 8) silicon carbide nanotube.  相似文献   

14.
Mi Lu  Houan Zhang 《Ionics》2013,19(11):1695-1698
Spherical silicon is controllably synthesized by the hydrolysis of tetraethylorthosilicate (TEOS) with the addition of different contents of ammonia to form SiO2, then reduced by magnesium powder in argon atmosphere at 900 °C for 3 h. The experimental results show that the electrochemical performance of the as-prepared silicon anode is much affected by the morphology of silicon, and the spherical silicon with a particle size of 250–300 nm shows a reversible capacity of 1,345.8 mAh g?1 with the capacity retention of 83.2 % after 20 cycles. The relationship between the electrochemical performance of the spherical silicon and the diameters of silicon sphere makes it possible to control the performance of the silicon anode by adjusting the hydrolysis conditions of TEOS.  相似文献   

15.
In order to investigate the specifications of nanoscale transistors, we have used a three dimensional (3D) quantum mechanical approach to simulate square cross section silicon nanowire (SNW) MOSFETs. A three dimensional simulation of silicon nanowire MOSFET based on self consistent solution of Poisson-Schrödinger equations is implemented. The quantum mechanical transport model of this work uses the non-equilibrium Green’s function (NEGF) formalism. First, we simulate a double-gate (DG) silicon nanowire MOSFET and compare the results with those obtained from nanoMOS simulation. We understand that when the transverse dimension of a DG nanowire is reduced to a few nanometers, quantum confinement in that direction becomes important and 3D Schrödinger equation must be solved. Second, we simulate gate-all-around (GAA) silicon nanowire MOSFETs with different shapes of gate. We have investigated GAA-SNW-MOSFET with an octagonal gate around the wire and found out it is more suitable than a conventional GAA MOSFET for its more I on /I off , less Drain-Induced-Barrier-Lowering (DIBL) and less subthreshold slope.  相似文献   

16.
In order to overcome the main obstacles for lithium–sulfur batteries, such as poor conductivity of sulfur, polysulfide intermediate dissolution, and large volume change generated during the cycle process, a hard‐template route is developed to synthesize large‐surface area carbon with abundant micropores and mesopores to immobilize sulfur species. The microstructures of the C/S hybrids are investigated using field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherms, and electrochemical impedance spectroscopy techniques. The large surface and porous structure can effectively alleviate large strain due to the lithiation/delithiation process. More importantly, the micropores can effectively confine small molecules of sulfur in the form of S2–4, avoiding loss of active S species and dissolution of high‐order lithium polysulfides. The porous C/S hybrids show significantly enhanced electrochemical performance with good cycling stability, high specific capacity, and rate capability. The C/S‐39 hybrid with an optimal content of 39 wt% S shows a reversible capacity of 780 mA h g?1 after 100 cycles at the current density of 100 mA g?1. Even at a current density of 5 A g?1, the reversible capacity of C/S‐39 can still maintain at 420 mA h g?1 after 60 cycles. This strategy offers a new way for solving long‐term reversibility obstacle and designing new cathode electrode architectures.  相似文献   

17.
In this work, we rationally designed an efficient template‐free synthetic strategy to fabricate hierarchical mesoporous hollow ZnMn2O4 sub‐microspheres (HZSMs) constructed entirely from nanoparticle (NP) building blocks of size ≈15 nm. The well‐known inside‐out Ostwald ripening process was tentatively proposed to shed light on the formation mechanism of the mesoporous hollow nano‐/microarchitecture. In favor of the intrinsic structural advantages, these resulting HZSMs exhibited superior electrochemical lithium‐storage performance with high specific capacity, excellent cyclability, and good rate capability when evaluated as an anode material for advanced Li‐ion batteries (LIBs). The excellent electrochemical performance should be reasonably ascribed to the porous and hollow structure of the unique HZSMs with nanoscale subunits, which reduced the diffusion length for Li+ ions, improved the kinetic process and enhanced the structural integrity with sufficient void space for tolerating the volume variation during the Li+ insertion/extraction. These results further revealed that the as‐prepared mesoporous HZSMs would be a promising anode for high‐performance LIBs.  相似文献   

18.
通过脉冲电沉积,外延生长出小单元长度的Bi2Te3/Sb超晶格纳米线.借助哈曼方法,测量了超晶格纳米线阵列的热电性能,330 K时的ZT值可达0.15.研究了Bi2Te3/Sb超晶格纳米线阵列器件的制冷或者加热能力,发现器件的上下表面的最大温差可以达到6.6 K.  相似文献   

19.
3D vertically aligned carbon nanotubes (CNTs)/NiCo2O4 core/shell structures are successfully synthesized as binder‐free anode materials for Li‐ion batteries (LIBs) via a facile electrochemical deposition method followed by subsequent annealing in air. The vertically aligned CNTs/NiCo2O4 core/shell structures are used as binder‐free anode materials for LIBs and exhibit high and stable reversible capacity (1147.6 mAhg?1 at 100 mAg?1), excellent rate capability (712.9 mAh g?1 at 1000 mAg?1), and good cycle stability (no capacity fading over 200 cycles). The improved performance of these LIBs is attributed to the unique 3D vertically aligned CNTs/NiCo2O4 core/shell structures, which support high electron conductivity, fast ion/electron transport in the electrode and at the electrolyte/electrode interface, and accommodate the volume change during cycling. Furthermore, the synthetic strategy presented can be easily extended to fabricate other metal oxides with a controlled core/shell structure, which may be a promising electrode material for high‐performance LIBs.  相似文献   

20.
Silver-coated silicon nanowire (SiNW) arrays were prepared utilizing galvanic displacement processes consisting of three steps: galvanic displacement deposition of silver particles using a HF-AgNO3 or NH4F-AgNO3 aqueous solution; formation of SiNW arrays by a silver-assisted chemical etching process conducted in the HF-H2O2 aqueous solution; deposition of silver particles on the SiNW arrays from the NH4F-AgNO3 aqueous solution. The effects of the morphology of pre-deposited silver particles and deposition solution on the formation of silver-coated SiNW arrays were discussed. Surface-enhanced Raman scattering (SERS) performances have been studied using Rhodamine 6G (R6G) probe molecules on the silver-coated SiNW substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号