首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low temperature synthesis of single crystalline Ge nanowires via chemical vapor deposition is enabled by balancing the feedstock and its diffusion in growth seeds. Understanding and optimizing the synthetic chemistry leads to deterministic nanowire growth at well-defined locations and bulk quantity production of homogeneous nanowires, both of which greatly facilitate the assembly toward parallel nanowire arrays. Surface chemistry studies reveal that p- and n-type Ge nanowires undergo different oxidation routes and the surface oxide induced states cause opposite band bending for nanowires with different doping. Furthermore, long chain alkanethiols form a dense and uniform protection layer on Ge nanowire surfaces and therefore afford excellent oxidation resistance. Finally, high performance field effect transistors are constructed on Ge nanowires with both thermally grown SiO2 and atomic layer deposited HfO2 as gate dielectrics. PACS 73.63.-b; 73.63.B6; 73.22.-f; 73.20.At; 73.90.+f  相似文献   

2.
We report patterned horizontal growth of ZnO nanowires on SiO2 surface for the study of electrical and luminescent characteristics of individual nanowires and for device applications. Patterns of gold catalytic seed islands with barrier layers which suppress vertical growth were employed to facilitate horizontal growth on SiO2 surface. After the growth, ZnO nanowire devices are fabricated by patterning electrodes aligned over the seed islands and their device characteristics are investigated. We could also investigate history of synthesis conditions by obtaining local luminescence characteristics along individual nanowires.  相似文献   

3.
Nanowires of amorphous SiO2 were synthesized by thermal processing of a Si(100) substrate at 1100 °C in the presence of a nitrogen flow, and using a 15 nm thick high silicon-solubility Pd/Au film as a catalyst. The substrate itself was the only source of silicon for the nanowire growth. The nanostructures produced were characterized by high resolution transmission and scanning electron microscopy and by X-ray diffraction. The nanowire growth is consistent with the vapor-liquid-solid (VLS) mechanism, with particles of Pd2Si and Au(Pd) being observed to form from the reaction between silicon and the catalytic film, and to remain at the tip of the wires. The synthesized nanowires showed a well defined morphology which could be very interesting for lasing applications. PACS 81.05.Ys; 81.10.Bk; 85.40.Ux  相似文献   

4.
We report on structural and electrical properties of GaAs nanowires (NWs) grown by molecular beam epitaxy (MBE) on GaAs and SiO2 substrates using Au as growth catalyst. Au–Ga particles are observed on the top of the NWs by transmission electron microscopy (TEM). In most of the observed cases, individual particles contain two Au–Ga compositions, in particular orthorhombic AuGa and β′ hexagonal Au7Ga2. The wires grown on GaAs are regularly shaped and tidily oriented on both (1 0 0) and (1 1 1)B substrates. TEM also reveals that the NWs have a wurtzite lattice structure. Electrical transport measurements indicate that nominally undoped NWs are weakly n-type while both Be- and Si-doped wires show p-type behaviour. The effect of the lattice structure on impurity incorporation is briefly discussed.  相似文献   

5.
Formation of Cu-doped SiOxCy nanostructures has been studied by using hexamethyldisiloxane (HMDSO)/H2/Ar radio frequency (RF) plasma, where a copper tube was utilized as power electrode to generate plasma jet. Tree-like nanostructures were obtained at low concentration of HMDSO. One can find the initial vertical growth of nanowires (NWs) and the spherical structures on sidewalls of the bended NWs, which were attributed to the vertical gas flow and secondary catalyzing due to copper from the ambience, respectively. However, the fragments with big mass were too many to synthesize nanostructure at high concentration of HMDSO. More Cu particles were transported to the substrate while an RF bias was applied to the substrate, which restrained the NWs growth catalyzed by Au and resulted in the formation of acaleph-like nanostructures.  相似文献   

6.
In this paper, we describe the growth and potential application of metal nanocrystal assemblies on metal-catalyzed, CVD-grown silicon nanowires (SiNWs). The nanowires are decorated by chemical assembly of closely spaced (1–5 nm) Ag (30–100 nm diameter) and Au (5–25 nm diameter) nanocrystals formed from solutions of AgNO3 and NaAuCl4·2H2O, respectively. The formation and growth of metal nanocrystals is believed to involve the galvanic reduction of metal ions from solution and the subsequent oxidation of available Si-hydride sites on the surfaces of the nanowires. A native oxide layer suppresses formation of metal nanocrystals; adding HF to the ionic solutions significantly increases the density of nanocrystals on the surfaces of the nanowires. The nanocrystals coating the nanowires were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction. Ag nanocrystals on the nanowires afford sensitive detection of Rhodamine 6G (R6G) molecules in the 100 picomolar–micromolar range by surface enhanced Raman spectroscopy. In addition, Au nanocrystals formed on selected surfaces of a substrate of arbitrary shape can serve as effective nuclei for localized nanowire growth. PACS 81.07.b; 81.15.Gh  相似文献   

7.
Amorphous silicon oxide (SiOx) nanowires were directly grown by thermal processing of Si substrates. Au and Pd–Au thin films with thicknesses of 3 nm deposited on Si (0 0 1) substrates were used as catalysts for the growth of nanowires. High-yield synthesis of SiOx nanowires was achieved by a simple heating process (1000–1150 °C) in an Ar ambient atmosphere without introducing any additional Si source materials. The as-synthesized products were characterized by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy measurements. The SiOx nanowires with lengths of a few and tens of micrometers had an amorphous crystal structure. The solid–liquid–solid model of nanowire formation was shown to be valid.  相似文献   

8.
A method for fabricating aligned nanowire arrays on surfaces is shown. Gold and segmented Au/Ni/Au nanowires of high aspect ratio have been prepared by template electrosynthesis, and functionalized with charged short alkanethiols that can be ionized in aqueous solutions. Different distributions of funtionalized nanowires could be obtained on large surfaces from nanowire aqueous suspensions, avoiding aggregation due to electrical repulsion. Due to the high magnetic anisotropy of segmented Au/Ni/Au nanowires chaining of aligned nanowires could be obtained by applying a low magnetic field. While electrostatics favours side wire interactions due to the high aspect ratio, concurrent electrostatics and applied magnetic field yields end‐to‐end interaction and linear alignment without bifunctionalization. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The one-dimensional (1D) Sandia octahedral molecular sieves (SOMS) Na2Nb2O6·H2O nanowires were prepared by the reaction of Nb powder with NaOH via a one-step hydrothermal methods. The products were characterized by SEM, TEM, XRD, IR and EDX. A plausible sprouting growth mechanism is proposed for the formation of Na2Nb2O6·H2O nanowires based on the systematic investigation. Na2Nb2O6·H2O nanoribbons-based complex flowerlike structure were first grew on the metallic niobium surface, the growth process of SOMS nanowire is similar to the plant seed sprouting and growing, Na2Nb2O6·H2O nanowires were finally formed at the depletion of metallic niobium powder. In the end, we showed that Na2Nb2O6·H2O nanowires is hydrothermally synthesized in the 15 M NaOH solution at 423 K, which can be easily converted into NaNbO3 nanowires by calcination, while the NaNbO3 cubes were obtained through the same hydrothermal process at a higher temperature of 453 K.  相似文献   

10.
SiOx nanowire bunches were fabricated on a SiNx film with Au catalytic metal in the presence of an Ar flow of 50 sccm at 1150 °C. The resulting samples were characterized by field-emission scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. A SiNx film serves as a barrier to the diffusion of Si atoms from the Si substrate to the catalytic Au metal, where a substrate is a Si source material for SiOx nanowire (NW) growth. Using this process, we could temporally control the initial growth step of SiOx NWs and easily grow the NW bunch.  相似文献   

11.
Dynamic scanning photocurrent microscopy was applied to Sb2Se3 crystalline single nanowires (NWs) to analyze their transient photocurrent responses. These NWs exhibited switching behavior with rapid rise and decay times upon illumination by laser pulses. The estimated spectral responsivity and external quantum efficiency for a freshly‐prepared NW at a bias voltage of 0.3 V and excitation wavelength of 488 nm were ~16.9 mA/W and ~42.9%, respectively. A pyroelectric‐like current transient was observed with reduced spectral responsivity when nonpolar Sb2Se3 single‐crystalline NWs were excited by laser pulses. Because Sb2Se3 NWs were nonpyroelectric or ferroelectric, the pyroelectric‐like current could possibly be attributed to temperature dependent nonlinear space‐charge distributions. Defects produced by the external electrical bias generated and re‐distributed space charges in the NWs. As a result, the temperature dependent inhomogeneous electric field led to nonlinear expansions or contractions of the lattice (electrostriction) that can produce pyroelectric current. We obtained a lower bound of equivalent pyroelectric coefficient α ≥ 60.09 μC/m2 K from these materials by fitting the electrical transients. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
GaN nanowires doped with Mg have been synthesized at different temperature through ammoniating the magnetron-sputtered Ga2O3/Au layered films deposited on Si substrates. X-ray diffraction (XRD), Scanning electron microscope (SEM), high-resolution TEM (HRTEM) equipped with an energy-dispersive X-ray (EDX) spectrometer and photoluminescence (PL) were used to analyze the structure, morphology, composition and optical properties of the as-synthesized sample. The results show that the ammoniating temperature has a great impact on the properties of GaN. The optimally ammoniating temperature of Ga2O3/Au layer is 900 C for the growth of GaN nanowires(NWs). The band gap emission (358 nm) relative to that (370 nm) of undoped GaN NWs has an apparent blueshift, which can be ascribed to the doping of Mg. Finally, the growth mechanism is also briefly discussed.  相似文献   

13.
We have investigated the effect of trimethyl aluminum (TMA) and water (H2O) half‐cycle treatments on HF‐treated, and O3‐oxidized GaN surfaces at 300 °C. The in‐situ X‐ray photoelectron spectroscopy results indicate no significant re‐growth of Ga–O–N or self‐cleaning on HF‐treated and O3‐oxidized GaN substrates with exposure to water and TMA. This result is different from the self‐cleaning effect of Ga2O3 seen on sulfur‐treated GaAs or InGaAs substrates. O3 causes aggressive oxidation of GaN substrate and direct O–N bonding compared to H2O. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In this work, uniform, quasi‐spherical gold nanoparticles (Au NPs) with sizes of 31–577 nm are prepared via one‐pot seeded growth with the aid of tris‐base (TB). Distinct from the seeded growth methods available in literature, the present method can be simply implemented by subsequently adding the aqueous dispersion of the 17 nm Au‐NP seeds and the aqueous solution of HAuCl4 into the boiling aqueous TB solution. It is found that at the optimal pH range, the sizes of the final Au NPs and their concentrations are simply controlled by either the particle number of the Au seed dispersion or the concentration of the HAuCl4 solution, while the latter enables us to produce large Au NPs at very high concentration. Moreover, as‐prepared Au NPs of various sizes are coated on glass substrates to test their surface‐enhanced Raman scattering (SERS) activities by using 4‐aminothiophenol (4‐ATP) molecules as probes, which exhibit “volcano type” dependence on the Au NP sizes at fixed excitation wavelength. Furthermore, the Au NPs with sizes of ≈97 and 408 nm exhibit the largest SERS enhancement at the excitation wavelength of 633 and 785 nm, respectively.  相似文献   

15.
A simple and robust route is described to the synthesis of single‐crystal Au nanospheres with diameters controlled in the range of 5 nm to 150 nm. The success of this synthesis relies on the use of single‐crystal Au spheres with different diameters as the seeds for successive growth and the use of a slow injection rate for the precursor to enable surface diffusion for the atoms added onto the surface of a seed. The diameters could be precisely controlled by varying the size and/or number of the seeds. The products exhibit excellent uniformity in terms of both size and shape and they are expected to find widespread use in a number of applications, including self‐assembly, fabrication of metallodielectric photonic crystals, plasmonics, and biomedical research.  相似文献   

16.
The preparation of Au‐on‐Pd heteronanostructure (HNS) using citrate‐stabilized polycrystalline Pd nanoparticles (NPs) as the seeds is described. The resulting Au‐on‐Pd HNS is characterized and it is found that the formation of Au‐on‐Pd HNS depends greatly on a ratio between Pd seeds and AuCl4? ions added and the optimal molar ratio is 10:1. If fewer AuCl4? ions are added (Pd/Au ratio is 100:1), the growth of Au NPs only occurs on part of the Pd seeds’ surface. The addition of more AuCl4? ions (Pd/Au ratio is 5:1) hinders the growth of Au NPs on the Pd seeds’ surface. To demonstrate the catalytic performance, the electrochemistry oxidation of ethanol and the reduction of p‐nitrophenol by NaBH4 are chosen to examine the catalytic activity of Au‐on‐Pd HNS. Pd seeds, Au NPs, and poly(vinyl pyrrolidone) (PVP)‐stabilized PdAu nanoalloy are used as the references for comparison. In the first reaction, the catalytic reactivity of Au‐on‐Pd HNS is better than that of corresponding pure Pd or Au NPs, while the opposite occurs for the latter reaction. The catalytic activity of Au‐on‐Pd HNS is much higher than that of PVP‐stabilized PdAu nanoalloy.  相似文献   

17.
We investigate the effect of O3 and H2O oxidant pre‐pulse prior to Al2O3 atomic layer deposition for Si surface passivation. Interfacial oxide SiOx formed by the O3 pre‐pulse is more beneficial than that by H2O to a high level of surface passivation. The passivation of thinner H2O–Al2O3 films is more improved by this O3 pre‐pulse. O3 pre‐pulse for 10 nm H2O–Al2O3 reduces saturation current density in boron emitter to 18 fA cm–2 by a factor of 1.7. Capacitance–voltage measurements reveal this interfacial oxide plays a role of decreasing interface trap density without detrimental effect to negative charge density of Al2O3. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

18.
SiO2 nanowires gain scientific and technological interest in application fields ranging from nano-electronics, optics and photonics to bio-sensing. Furthermore, the SiO2 nanowires chemical and physical properties, and so their performances in devices, can be enhanced if decorated by metal nanoparticles (such Au) due to local plasmonic effects.In the present paper, we propose a simple, low-cost and high-throughput three-steps methodology for the mass-production of Au nanoparticles coated SiO2 nanowires. It is based on (1) production of the SiO2 nanowires on Si surface by solid state reaction of an Au film with the Si substrate at high temperature; (2) sputtering deposition of Au on the SiO2 nanowires to obtain the nanowires coated by an Au film; and (3) furnace annealing processes to induce the Au film dewetting on the SiO2 nanowires surface. Using scanning electron microscopy analyses, we followed the change of the Au nanoparticles mean versus the annealing time extracting values for the characteristic activation energy of the dewetting process of the Au film on the SiO2 nanowires surface. Such a study can allow the tuning of the nanowires/nanoparticles sizes for desired technological applications.  相似文献   

19.
用自制的设备制备了取向和无取向氧化铟纳米线,并研究了In2O3纳米线的场发射性质,发现取向纳米线比非取向纳米线有着更好的场发射特性.取向纳米线的开启和阈值场强明显低于非取向纳米线,这可能是由于取向纳米线之间的场屏蔽效应较弱以及取向纳米线有较多的顶部发射端的缘故. 关键词: 场发射 纳米线 取向 非取向  相似文献   

20.
Rare earth metal seed Tb was employed as catalyst for the growth of GaN wires. GaN nanowires were synthesized successfully through ammoniating Ga2O3/Tb films sputtered on Si(1 1 1) substrates. The samples characterization by X-ray diffraction and Fourier transform infrared indicated that the nanowires are constituted of hexagonal wurtzite GaN. Scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy showed that the samples are single-crystal GaN nanowire structures. The growth mechanism of the GaN nanowires is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号