首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, extensive experimental results on broad-band double cladding Er3+-Yb3+ co-doped superfluorescent fiber sources (SFSs), characterizing their output power, mean wavelength, and bandwidth (BW) stability with variations of pump power, pump wavelength, and fiber temperature, have been reported. For a 55-cm fiber, SFS power from 3.7755 (maximum BW condition of more than 80 nm) to 9.1837 mW (maximum power condition, BW is about 34 nm) has been achieved. The SFS mean wavelength dependence on pump wavelength is highly pump temperature sensitive, and can be reduced to zero in a chosen pump temperature field. The intrinsic variation of the SFS mean wavelength λm with fiber temperature is also measured, and a linear variation from 15 to 45 °C with a slop of −0.053 nm/°C for Lf = 100 cm and −0.04 nm/°C for Lf = 55 cm is found.  相似文献   

2.
The output spectrum-stability of Er-doped superfluorescent fiber source (SFS) was measured by changing the temperature around the excited Er-doped fiber (EDF). With the experiment results, the influences of the SFS's spectrum-stability on the signal-to-noise ratio (SNR) of fiber optic gyroscope (FOG) were simulated. The simulated results demonstrate that the SNR of FOG will change no matter the power, mean wavelength or the spectral bandwidth of the light output from the Er-doped SFS is changing. The results show that the changing of SNR caused by the output power's variation is three orders of magnitude larger than that caused by the variation of mean wavelength or bandwidth. And the main factor influencing the stability of FOG's SNR is the temperature-stability of the output power of Er-doped SFS.  相似文献   

3.
介绍了掺铒超荧光光纤光源(SFS)的基本原理和SFS各种基本结构的特点。结合实际应用选择了单程后向(SPB) SFS作为光纤陀螺用光源。理论分析了影响单程后向掺铒超荧光光纤光源输出特性的各种因素。通过实验分析了铒纤长度对单程后向掺铒光纤光源泵浦效率和输出光谱的影响,特别是对中心波长稳定性的影响,对于单程后向结构掺铒光纤光源来说,铒纤长度有一个最佳值。演示了铒纤在选择最佳长度的情况下,泵浦功率对输出谱型的影响。通过实验分析了-40℃~60℃之间光源输出光谱和输出光功率的温度稳定性。最终得到了适用于惯导级光纤陀螺的光源。  相似文献   

4.
杨远洪  索鑫鑫  杨巍 《中国物理 B》2014,23(9):94213-094213
The compact super-fluorescent fiber source(SFS) output spectra variations at different pump currents and under different dose of gamma-ray radiation were measured and compared respectively. The radiation-induced attenuation(RIA)self-compensating effect in SFS based on photo-bleaching was found and the general mathematic model of SFS output spectra variations was made. The radiation-induced background attenuation(RIBA) at the pump wavelength was identified to be the main cause of the total output power and spectra variations and the variations can then be compensated by active control of the pump power to enhance the self-compensating effect. With closed-loop feedback control of pump current,double-pass backward(DPB) configuration and spectrum re-shaping technology, an SFS prototype was made and tested.The mean-wavelength stability of about 87.4 ppm and output power instability of less than 5% were achieved under up to200 krad(Si) gamma-ray irradiation.  相似文献   

5.
A simple sensing method for simultaneous measurement of temperature and strain is investigated by using a Sagnac fiber loop mirror composed of a polarization-maintaining photonic crystal fiber (PM-PCF) incorporating an erbium-doped fiber (EDF). Amplified spontaneous emission created by a pumped EDF is transmitted to a Sagnac fiber loop mirror. The interference between two counter-propagating signals in a Sagnac fiber loop mirror generates a periodic transmission spectrum with respect to wavelength. When external temperature is increased, the transmission peak power reduces because the amplified spontaneous emission of the EDF is decreased by the applied temperature change (0.04 dB/°C). The peak wavelength is shifted into the shorter wavelength because of the negative temperature dependence of the birefringence of the PM-PCF (0.3 pm/°C). As the applied strain increases, the peak wavelength of the transmission spectrum of the Sagnac loop mirror incorporating the EDF shifts into a longer wavelength (1.3 pm/με) because the phase change of the proposed sensing probe is directly proportional to the applied strain. The transmission peak power, however, is not changed by the applied strain. Since the source and the sensing probe are integrated, the overall system configuration is significantly simplified without requiring any additional broadband light source. Therefore, it is possible to simultaneously measure temperature and strain by monitoring the variation of transmission peak power and peak wavelength, respectively.  相似文献   

6.
铒纤长度对掺铒光源性能影响的实验研究   总被引:10,自引:2,他引:8  
闾晓琴  高峰  贾鲁宁  张桂才 《光子学报》2005,34(7):1032-1035
实验演示了铒纤长度的选择对1550 nm双通后向超荧光掺铒光纤光源(DPB SFS)的平均波长以及谱宽性能的影响,特别是对平均波长稳定性的影响,实验分析了-20℃~60℃之间光源固有平均波长的变化,最终得到了铒纤固有热系数以及整个样机的平均波长稳定性随铒纤长度变化的实验曲线,对超荧光掺铒光纤光源的器件选择和优化设计具有重要参考价值.  相似文献   

7.
李颖娟  刘延虎  黄皓 《应用光学》2010,31(6):1009-1012
 分析铒纤长度对掺铒光源输出特性的影响对于光源的优化设计有重要意义。实验分析了铒纤长度对单程前向和后向掺铒光纤光源(SFS)输出特性的影响。分析了铒纤长度与单程SFS输出光功率的关系,以及铒纤长度对单程SFS输出光谱宽度及中心波长的影响。找到了最佳铒纤长度的范围,对单程掺铒光纤光源的器件选择及性能优化有重要的参考价值。  相似文献   

8.
An all-fiber Mach–Zehnder interferometer (MZI) consisting of a long-period fiber grating with a micro-taper is proposed for simultaneous measurement of temperature and strain. The experimental results demonstrate that the temperature and strain sensitivities of the proposed MZI are 83 pm/°C and ?2.6 pm/με, respectively. The strain sensitivity is 20 times as high as that of a long-period fiber written by CO2 laser pulses combined with a fiber bitaper. In addition, the interferometer requires only a common single-mode fiber, and it is easy to fabricate and is inexpensive for temperature and strain sensing applications.  相似文献   

9.
A core-mode Fabry–Perot (FP) interferometer is constructed by using a dual-core photonic crystal fiber (DCPCF). The FP cavity is formed by a single piece of DCPCF, which can also serve as a direct sensing probe without any additional components. We theoretically and experimentally studied its temperature responses in the range of 40–480 °C. The temperature sensitivity is 13 pm/°C which matches the theoretical results. Since the temperature sensitivity of the proposed sensor is independent on cavity length, precise control of the length of FP cavity or photonic crystal fiber is not required. The sensor size can be as short as 100–200 μm, and its fabrication only involves splicing and cleaving, which make the sensor production very cost-effective. The proposed FP interferometric sensor based on a DCPCF can find applications in high-temperature measurement especially those that need accurate point measurement with high sensitivity.  相似文献   

10.
Supercontinuum (SC) generation in a standard telecom fiber using 1 ns pulses of a 1,550-nm DFB laser amplified in a cascade of erbium and erbium/ytterbium fiber amplifiers is reported. The SC source operated at 200 kHz repetition rate and delivered up to 2 W of average output power in the band of 1,300–2,500 nm with a diffraction limited beam. For the wavelengths over 1,650 nm, the output power of 1.1 W was recorded. The spectrum was very flat with the flatness of <5 dB in the wavelength interval of 1.6–2.18 μm. To the best of our knowledge, it is the first report on W-level SC generation obtained only in a standard single-mode fiber (SMF-28) with almost the entire spectrum in the eye-safe spectral region (λ > 1.4 μm) permitted by silicate glass transparency.  相似文献   

11.
We propose and experimentally demonstrate switchable and tunable transmission characteristics of a Mach–Zehnder interferometer comb filter based on thermal operation. Its temperature characteristics are investigated to reveal a shift in the peak wavelength position from 0.003 to 0.004 nm/°C and a tunable range of wavelength spacing of 0.76–0.90 nm for maximum and minimum effective lengths, respectively. This configuration provides the unique advantages of an all-fiber structure, tunable wavelength spacing, switchable spectral peaks, independent tuning of the center wavelength and wavelength spacing of the spectral peaks, and low polarization sensitivity. It is relatively simple to fabricate and expected to have applications in temperature fiber optic sensors and multiwavelength fiber laser sources.  相似文献   

12.
Yage Zhan  Jun Luo  Hua Wu  Muhuo Yu 《Optik》2012,123(7):637-640
An all-fiber high resolution optical fiber grating concentration sensor has been studied theoretically and experimentally. A long period grating is used as the sensor head and a wavelength matched fiber Bragg grating is used as an interrogator to convert wavelength into intensity encoded information for interrogation. A concentration resolution of 0.104 g/L for NaCl solution is realized in experiment. The all-fiber sensor system, with the sensor head and the interrogator being all optical fiber components, is suitable for far-distance monitoring. The sensor system is with multifunction and can be used for temperature monitoring. A temperature resolution of 0.013 °C has realized in experiment.  相似文献   

13.
A spectrum-sliced multi-wavelength fiber source (SS-MWFS) based on double-pass superfluorescent fiber source (SFS) with a reflection Mach-Zehnder filter (RMZF) as the reflected comb filter is demonstrated.With backward pumped configuration, MWFS with 50 wavelength channels of extinction ratio (ER) of 16.7 dB is obtained over the almost total C-band gain region. Total output power of the MWFS is 16.2 mW which shows that a power of about 0.3 mW of per channel is achieved. The SS-MWFS with forward pumped configuration is also discussed for comparing. The backward pumped configuration can provide a larger output power while only a little smaller ER than that of the forward pumped configuration.  相似文献   

14.
This study presents a simple Mach–Zehnder interferometer (MZI) to obtain the bimodal characteristics that realize simultaneous measurement of strain and temperature through cascading an ultra-long-period fiber grating and a knob-shaped taper. We obtain the multi-dip feature from the MZI, and the Dips 2 and 5 are selected from 11 interference dips. Experimental results indicated that the wavelength sensitivities of Dips 2 and 5 are ??0.54 nm mε?1 and 0.058 nm °C?1, and ??0.53 nm mε?1 and 0.055 nm °C?1 to strain and temperature, respectively. The depth sensitivities are ??3.3 dB mε??1, ? 0.015 dB °C?1 and ?5.8 dB mε?1, and 0.06 dB °C?1 for Dips 2 and 5, respectively. It is concluded that the proposed structure is suitable for simultaneous strain and temperature measurements.  相似文献   

15.
This article presents an erbium-doped fiber ring laser for high temperature measurement with high accuracy. The proposed laser sensor employs a regenerated fiber Bragg grating (RFBG) as a sensor element. Through thermal treatments, the RFBG with enhanced thermal resistance was obtained. The laser emission optical spectrum presents good performance with a high optical signal-to-noise ratio of 58dB. Experimental results demonstrate a wavelength sensitivity to the temperature is 15.5 pm/ºC with the temperature range from 300ºC to 900ºC, and the correlation coefficient is 0.999. The results prove it is able to provide potential applications in high temperature measurement.  相似文献   

16.
We investigate the characteristics of the dual-forward synchronously pumped L-band erbium-doped su- perfiuorescent fiber source (SFS). The effects of pump ratio and fiber length arrangements on the output characteristics of the L-band SFS in terms of mean wavelength, spectral linewidth, and output power are analyzed. It is shown that the optimized pump ratio and fiber length arrangements provide broadening spectral linewidth and enhanced pumping efficiency, while the synchronous pump ensures stable mean wavelength operation. A new single-forward pumping scheme with a section of unpumped fiber is pro- posed to achieve a mean wavelength stable L-band SFS with a broadening linewidth of 50.4 nm and a pumping efficiency of 33.5%.  相似文献   

17.
付博  陈淑芬 《光学技术》2007,33(5):785-786
随着光纤陀螺研究的不断进展,对陀螺光源的稳定性的要求也越来越高。SFS(超荧光光纤光源)正是应用于高精度陀螺要求的宽带光源,它的平均波长和功率的温度稳定性直接影响着光纤陀螺的性能。从SFS的特性分析对其驱动系统进行了设计,提出并实现了温度稳定性的控制方案。  相似文献   

18.
《Current Applied Physics》2014,14(3):467-471
A clad-modified fiber optic sensor with nanocrystalline CeO2 is proposed for gas detection. As-prepared and annealed CeO2 (500 °C) samples have been used as gas sensing media. The spectral characteristics of the fiber optic gas sensor are studied for various concentrations of ammonia, ethanol and methanol gases (0–500 ppm). The sensor exhibits linear variation in the spectral peak intensity with the gas concentration. The characteristics of the sensor are also studied for gas selectivity. The time response characteristics of the sensor are reported.  相似文献   

19.
为了获得高功率、宽带宽及谱平坦的长波段掺铒光纤光源,基于2级双程芯泵浦,应用偏振复用技术实现泵浦瓦级供给,在泵浦总功率和光纤总长度都不变的情况下,数值分析了4种光源结构的输出特性受泵浦和光纤分配比例的影响。结果表明,4种结构基本都能工作于L波段(1 565 nm~1 610 nm),带宽受结构影响较小,但只有双程后向+双程后向结构可同时拥有高输出功率和高平坦度。其在总泵浦功率750 mW,第一级泵浦功率为300 mW,第二级泵浦功率为450 mW时,和光纤总长度21 m,第一级光纤长度为18 m,第二级光纤长度为3 m时,可实现输出功率314 mW,带宽32.41 nm,中心波长1 584.84 nm,平坦度2.23 dB的L波段超荧光光源。  相似文献   

20.
In this paper, the Yb-doped superfluorescent fiber source (SFS) with cascaded broad fiber Bragg gratings (FBGs) are reported. The spectral properties of this SFS with cascaded broad FBGs are described and compared with that without cascaded broad FBGs. The experimental results have shown that cascaded broad FBGs can increase the output of some special wave bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号