首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In sinusoidal phase modulating laser diode (LD) interferometer, the injection current of the LD is sinusoidally modulated to realize the modulation of the wavelength. However, the light intensity of LD is also modulated, which affects the measurement accuracy. An all-fiber sinusoidal phase modulating LD interferometer for real-time displacement measurement is proposed where the influence of the intensity modulation is eliminated with a new algorithm. It is made clear that an optimal depth of the sinusoidal phase modulation (SPM) exists in the algorithm. Moreover, the SPM depth is locked at the optimal value by controlling the injection current with a feedback control system. The feasibility of the proposed interferometer for displacement measurement is verified by experiments.  相似文献   

2.
A two-wavelength sinusoidal phase-modulating(SPM) laser diode(LD) interferometer for nanometer accuracy measurement is proposed.To eliminate the error caused by the intensity modulation,the SPM depth of the interference signal is chosen appropriately by varying the amplitude of the modulation current periodically. Then,the refine theory is induced to the measurement,and the two-wavelength interferometer (TWI) is combined with the single-wavelength LD interferometric technique to realize static displacement measurement with nanometer accuracy.Experimental results indicate that a static displacement measurement accuracy of 5 nm can be achieved over a range of 200μm.  相似文献   

3.
In a conventional sinusoidal phase-modulating laser-diode (SPM-LD) interferometer, the wavelength of the LD is sinusoidally modulated by varying its injection current. However, the intensity modulation is associated with the wavelength modulation, which affects the measurement accuracy. We propose an SPM-LD interferometer insensitive to the intensity modulation of the light source, in which the influence of the intensity modulation is eliminated by choosing the appropriate sinusoidal phase modulation depth. Computer simulations and experiments are performed for real-time displacement measurement with the proposed SPM-LD interferometer. The measurement accuracy has been improved and the measurement repeatability is less than 1 nm. No additional components are required in our proposed method that leads to a simple system compared with the other previously proposed methods.  相似文献   

4.
Guotian He  Xiangzhao Wang 《Optik》2009,120(3):101-105
As there exist some problems with the previous laser diode (LD) real-time microvibration measurement interferometers, such as low accuracy, correction before every use, etc., in this paper, we propose a new technique to realize the real-time microvibration measurement by using the LD sinusoidal phase-modulating interferometer, analyze the measurement theory and error, and simulate the measurement accuracy. This interferometer utilizes a circuit to process the interference signal in order to obtain the vibration frequency and amplitude of the detective signal, and a computer is not necessary in it. The influence of the varying light intensity and light path difference on the measurement result can be eliminated. This technique is real-time, convenient, fast, and can enhance the measurement accuracy too. Experiments show that the repeatable measurement accuracy is less than 3.37 nm, and this interferometer can be applied to real-time microvibration measurement of the MEMS.  相似文献   

5.
A sinusoidal phase-modulating (SPM) laser diode (LD) interferometer for real-time surface profile measurement is proposed and its principle is analyzed. The phase signal of the surface profile is detected from the sinusoidal phase-modulating interference signal using a real-time phase detection circuit. For 60 × 60 measurement points of the surface profile, the measuring time is 10 ms. A root mean square (RMS) measurement repeatability of 3.93 nm is realized, and the measurement resolution reaches 0.19 nm.  相似文献   

6.
利用半导体激光器 (LD)、光隔离器、光纤定向耦合器、自聚焦透镜等组成双路光纤斐索型干涉仪。采用三角波电流调制 ,上、下边沿拍频信号差动鉴相的方法 ,提高了测量灵敏度和位移响应速度 ,增大了测量范围 ;利用辅助干涉仪检测系统的相位漂移 ,并对LD发光波长进行反馈控制 ,提高了系统的稳定性 ,实现了大测量范围、高分辨率、高精度位移测量。  相似文献   

7.
吴义芳 《光学学报》1997,17(11):528-1532
提出并在实验上实现了一种以慢变化近似为基础的新型正弦相位调制半导体激光干涉仪。原理上它不要求相位解调一次和二次谐波分量振幅在实验中必须保持相等,从而将动态范围提高了3-4个数量级且不损失精度。用压电陶瓷和微电机驱动位移。  相似文献   

8.
In this paper, the displacement of an object is measured with a photothermal phase-modulating laser diode interferometer. A feedback control system is designed to reduce the measurement errors caused by the fluctuations in the optical wavelength of the laser diode and the vibrations of the optical components in the interferometer. A new method is proposed to enlarge the measuring range of displacement. Using this method, the measuring range is enlarged from half wavelength to nearly 125 μm and the measurement accuracy is about 1 nm. The simulation and experimental results have shown the usefulness of the method and the feedback control system.  相似文献   

9.
飞秒光梳被广泛用于时间频率技术和精密光谱测量,由其时频特性所衍生的绝对测距技术以可溯源、大尺寸、高精度等优点有望成为未来长度计量的最重要手段.本文提出了一种基于飞秒光梳多路同步锁相的多波长干涉实时绝对测距方法,使多个连续波激光器通过光学锁相环技术同步锁定到飞秒光梳梳模上,通过多路同步相位测量和小数重合算法最终实现绝对距离测量.所提测量方法不仅能保留传统激光干涉测距的高分辨力和精度,而且可溯源至时间频率基准,对高精度长度测量、尤其是对物理复现“米”的定义具有重要计量意义.测距实验证明,四波长干涉测距的非模糊度量程达到44.6 mm,折射率波动导致非模糊度量程变化为纳米量级;多波长干涉测距的非模糊度量程也受制于空气折射率的测量误差,多波长干涉绝对测距的非模糊度量程在实验室环境下可达数米、甚至几十米,并通过2米线性位移实验证明了多波长绝对测距的大量程和线性测量性能.  相似文献   

10.
张在宣  陈庆根 《光子学报》1998,27(10):944-947
研制成一种小型、便携式、低值、对人眼安全、无合作目标的小型低值半导体LD激光测距仪.工作波长λ=905nm;测距范围14~1000m;测距精度<±1m;重复频率100Hz.有多种工作模式,具有省电功能.它的测距能力优于国内外同类低值LD激光测距仪.LF-1激光测距仪是一种光子雷达系统.本文从光子测距方程、系统结构、信噪比分析角度,讨论了系统的测距能力.  相似文献   

11.
正弦相位调制自混合干涉微位移测量精度分析   总被引:5,自引:0,他引:5  
郭冬梅  谈苏庆  王鸣 《光学学报》2006,26(6):45-850
为了提高自混合干涉仪的位移测量精度,提出将正弦相位调制技术引入自混合干涉中。相位调制由置于自混合干涉仪外腔中的电光晶体实现,相位解调由傅里叶分析的方法得到。对位移测量过程中各种可能的误差来源如电光晶体调制不稳定性、光在外腔中的二次反馈效应等对测量精度的影响进行了模拟分析,从理论上得到了这种新的信号处理方法可以达到纳米级的测量精度。实验上,用高精度的商用压电陶瓷标定的结果验证了这种正弦相位调制自混合干涉仪在普通实验室噪声环境中可以达到纳米级的位移测量精度。  相似文献   

12.
高准确度多频调制激光测距算法研究   总被引:1,自引:0,他引:1  
李桂英  陈磊  陈宇 《光子学报》2014,40(12):1888-1892
针对传统的激光测距仪测量准确度低、实时性差等问题,结合正交相位检测和坐标旋转数字式计算机角度解算方法,设计了一种多频激光测距系统.系统中采用改进的正交算法对噪音环境下的测距相位差的正切值进行计算,再通过坐标旋转数字式计算机角度解算方法计算出测距相位差,该方法有效地提高了测距准确度并大大降低了系统的运算量.在采样频率500 MHz、计算字长16位、回波信噪比14 dB时,测量范围为150 m,相位测量误差为0.026 4°,距离测量准确度达到0.11 mm.  相似文献   

13.
为实现小型化、非接触式、快速高精度的位移测量,设计并搭建了基于光学彩色共焦原理的位移测量系统。系统中数据拟合采用的方法是,对光谱响应函数极值周围的数据进行高斯叠加拟合,以获得光谱响应曲线的峰值,从而得到峰值所对应的波长。经过实验验证,系统的测量范围为2mm,测量精度可以达到10μm,线性度为3.4%,光谱响应的半高宽(FWHM)为49nm。因此能够满足一定精度的位移测量需求。  相似文献   

14.
The measurement accuracy of a parallel-plate interferometer for angular displacement measurement is analyzed. The measurement accuracy of angular displacement is not only related to the accuracy of phase extraction, but also related to initial incident angle, refraction index and thickness of plane-parallel plate as well as wavelength's stability of laser diode, etc. Theoretical analysis and computer simulation show that the measurement error of the angular displacement bears a minimum value when choosing an optimal initial incident angle in a large range. These analytical results serve as a guide in practical measurement. In this interferometer, reducing the refraction index or increasing the thickness of the parallel plate can improve the measurement accuracy; and the relative error of the phase measurement is 3.0×10−4 corresponding to 1 °C temperature variation. Based on these theoretical and experimental results, the measurement accuracy of the parallel-plate interferometer is up to an order of 10−8 rad.  相似文献   

15.
A new laser displacement sensor has been designed, constructed, and used in a train running at a speed of 64 km/h. The laser displacement sensor is insensitive to ambient light and to temperature. The parameters of the laser displacement sensor are as follows: the measurement range is 20 mm, and the laser displacement sensor resolution is 0.3 mm. All the results show that this new displacement sensor meets the requirement for real-time gauge measurement.  相似文献   

16.
The coherence length of a single mode laser diode (LD) can reach more than 10 m. It allows the application of this source of light to interferometric distance measurement, with a measurement range of several meters. However, the LD's wavelength tunability, which is a result of the dependence of the lasing wavelength on the injection current, prevents the realization of the theoretically possible metrological parameters of the interferometer. In this study, we analyze the influence of a low-frequency signal disturbance, e.g., noise or disturbing modulation inherent to the injection current of the LD, on the repeatability and measurement range of an LD interferometer used for displacement measurements. Both the measurement range and the resolution of the interferometer are found to be highly limited by this factor.  相似文献   

17.
Liquid crystal televisions have been employed as spatial light modulators in a variety of optical image processing applications. We have used such devices to develop techniques in speckle metrology for the electronic addition of speckle patterns and the display of speckle correlation, and also for the real-time display of object motion. Factors which affect the performance in terms of the useful working range and the accuracy of displacement measurement are discussed. Some modifications to the LCTV which should increase the potential of these devices as spatial light modulators, when used in both amplitude and phase modulation, are considered briefly.  相似文献   

18.
基于数值模拟的高准确度五步相移算法研究   总被引:4,自引:2,他引:2  
传统五步算法具有很好的准确度,但必须满足测量中无法实现的等步长相移条件,这在实际测量中无法使用。为此在双光束干涉原理的基础上,提出了一种改进型的五步算法,实现了在10 nm范围内任意步长的算法高准确度。通过数值模拟,结果表明:对于1 nm的步长测量误差、0.1%的信号测量误差,改进型五步算法的算法准确度优于0.001个相位周期,而且不需要等步长相移控制。改进型五步算法不仅技术上更易于实现,其结果也更加可靠,对于指导精密测长的实验和研究工作具有十分重要的意义。  相似文献   

19.
用激光多普勒效应远距离测量固体散射表面的位移   总被引:9,自引:3,他引:6  
利用激光多普勒效应实现了远距离固体表面的横向位移测量。从理论上分析了双光束差动结构的多普勒频移 ,设计了声光调制、双光束差动、大口径接收的光路系统和计算机实时跟踪补偿的位移测量系统。分别对普通纸张表面和金属表面进行实际测量 ,测量距离为 10m ,测量精度为± 0 .4%。  相似文献   

20.
In order to realize real-time displacement measurement with high resolution, sinusoidal phase modulation and integrating-bucket method are introduced in the self-mixing interference (SMI) system firstly. The phase of the laser beam is modulated by an electro-optic modulator (EOM) in the external cavity. Theoretical analysis, simulation results and error evaluation are presented. Experimentally, the micro-displacement of a high-precision commercial PZT is reconstructed and the reconstruction accuracy is on the order of nanometers for displacements of a few micrometers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号