首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on first-principles calculations, we show that very high-density periodic arrays of Nb4 clusters with both the tetrahedron and quadrangle configurations can be stably absorbed on the Cu(111) and Cu(100) surfaces, with the quadrangle configurations more stable than the tetrahedron ones. The strong covalent bonding between atoms within the Nb4 clusters contributes to the stability of Nb4 adsorptions on the Cu surfaces. The energy barriers for the tetrahedron to the quadrangle-Nb4 on Cu(111) and (100) are around 1.21 eV and 0.94 eV/cluster, respectively. The stable adsorption of high-density Nb4 on these surfaces should have important applications.  相似文献   

2.
使用基于密度泛函理论的第一性原理赝势法和超原胞模型,研究了吸附在Cu(100)表面上的二维有序排列的幻数团簇Nb4的结构稳定性及其电子结构性质.计算表明,四面体结构和平面的菱形结构的Nb4团簇都可以稳定地吸附在Cu(100)表面上,这个体系很可能有重要的应用前景.在Cu(100)表面上,菱形结构的Nb4比四面体结构的Nb4更稳定,从Nb4团簇的四面体结构到菱形结构,需经过的势垒高度约为0.94eV/团蔟.电子结构的计算表明,在Nb4吸附后,Cu(100)表面与Nb4团簇间有明显的电荷重新分布,表面Cu原子的电子态密度也明显改变. 关键词: 4团簇')" href="#">Nb4团簇 有序排列 结构稳定性 从头计算  相似文献   

3.
We investigated the surface properties of InAs(1 1 1)A by low-temperature scanning tunneling microscopy (LT-STM) with atomic resolution and first-principles calculation. Very clear atom image was observed, showing that the surface reconstruction is an In-vacancy structure. We also observed two kinds of adsorbates on the surface. The first-principles calculations indicate that the In-vacancy structure is the most stable surface reconstruction under any experimental conditions, which is consistent with the LT-STM observation. Investigations of adsorption properties of an In atom, an As atom, and an As2 molecule by the first-principles calculations imply that the observed adsorbates are an In atom and an As2 molecule.  相似文献   

4.
A plane-wave density functional theory (DFT) calculations have been performed to investigate structural and electronic properties of TaSin (n = 1-3, 12) clusters supported by graphene surface. The resulting adsorption structures are described and discussed in terms of stability, bonding, and electron transfer between the cluster and the graphene. The TaSin clusters on graphene surface favor their free-standing ground-state structures. Especially in the cases of the linear TaSi2 and the planar TaSi3, the graphene surface may catalyze the transition of the TaSin clusters from an isomer of lower dimensionality into the ground-state structure. The adsorption site and configuration of TaSin on graphene surface are dominated by the interaction between Ta atom and graphene. Ta atom prefers to adsorb on the hollow site of graphene, and Si atoms tend to locate on the bridge site. Further, the electron transfer is found to proceed from the cluster to the surface for n = 1 and 2, while its direction reverses as n > 2. For the case of TaSi, chemisorption is shown to prevail over physisorption as the dominant mode of surface-adsorbate interaction by charge density analysis.  相似文献   

5.
We report first principles calculations to analyze the ruthenium adsorption and diffusion on GaN(0 0 0 1) surface in a 2×2geometry. The calculations were performed using the generalized gradient approximation (GGA) with ultrasoft pseudopotential within the density functional theory (DFT). The surface is modeled using the repeated slabs approach. To study the most favorable ruthenium adsorption model we considered T1, T4 and H3 special sites. We find that the most energetically favorable structure corresponds to the Ru- T4 model or the ruthenium adatom located at the T4 site, while the ruthenium adsorption on top of a gallium atom (T1 position) is totally unfavorable. The ruthenium diffusion on surface shows an energy barrier of 0.612 eV. The resultant reconstruction of the ruthenium adsorption on GaN(0 0 0 1)- 2×2 surface presents a lateral relaxation of some hundredth of Å in the most stable site. The comparison of the density of states and band structure of the GaN(0 0 0 1) surface without ruthenium adatom and with ruthenium adatom is analyzed in detail.  相似文献   

6.
The C35BH-H2 complex and two other possible isomers, C34BCaH-H2 and C34BCbH-H2, are investigated using the local-spin-density approximation (LSDA) method. The results indicate that a single hydrogen molecule could be strongly adsorbed on two isomers, C34BCaH and C34BCbH, with binding energies of 0.42 and 0.47eV, respectively, and that these calculated binding energies are suitable for reversible hydrogen adsorption/desorption near room temperature. However, it is difficult for the H2 molecule to be firmly adsorbed on C35BH. We analyze the interaction between C34BCxH (x= a, b) and the H2 molecule using dipole moments and molecular orbitals. The charge analysis showed there was a partial charge (about 0.32e) transfer from 1-12 to the doped fullerenes. These calculation results should broaden our understanding of the mechanisms of hydrogen storage using borondoped fullerenes.  相似文献   

7.
The rutile TiO2(1 1 0) surface is a highly anisotropic surface exhibiting “channels” delimited by oxygen rows. In previous experimental and theoretical DFT works we could identify the molybdenum adsorption sites. They are located inside the channels. Moreover, experimental studies have shown that during subsequent annealing after deposition, special molybdenum nano structures can be formed, especially two monolayer high pyramidal chains of atoms.In order to better understand the dynamics of nano structure formation, we present a kinetic Monte Carlo study on diffusion and adsorption of molybdenum atoms on a TiO2(1 1 0) surface. A quasi one-dimensional lattice gas model has been used which describes the possible adsorption sites of a Mo atom in a single channel of the surface. The atomic positions of a 1.5 monolayer thick Mo film formed of pyramidal chains define the lattice sites of the model. Thereby the formation of three-dimensional clusters could be studied. Here we have studied the cluster formation as a function of parameters that can be controlled in a growth experiment by physical vapor deposition: deposition and annealing temperature, flux and total amount of deposited Mo. Good qualitative agreement with recent experiments is obtained.  相似文献   

8.
Growth modes of the free-standing NiCN (N ≤ 8) and Ni2CN (N ≤ 8) dusters are investigated by the allelectron density functional theory. The results reveal that there are two competing modes for the growth of these clusters: the linear chain and the ring structure without transannular bonds. The lowest-energy geometries of NiCN (N ≤ 8) are the linear chains with the Ni atom at one end, except for NiC2 and NiCT. The Ni2CN (N ≤ 8) clusters all prefer to the linear chains with the two Ni atoms at the two ends. Miilliken population analysis indicates that the total spin of the lowest-energy cluster show significant odd-even alternation. The NiMCN (M = 1,2) clusters with the even N are one and those with the odd-N are zero.  相似文献   

9.
Density functional theory calculations have been applied to investigate the adsorption geometry of water overlayers on the NaCl(1 0 0) surface in the monolayer regime. Competition between H-H intermolecular repulsion and the attraction of the polar molecules to the surface ions results in the most stable structure having a 2 × 1 adsorption symmetry with an adsorption energy of 415 meV. Overlayers of 1 × 1 symmetry, as observed in experiment, have slightly lower adsorption energies. The layers are also unstable with respect to rotation of individual molecules. Multiple hydrogens/oxygens interacting with a single substrate ion can pull that ion out of the surface, although the examples considered are energetically very unfavourable. Overlayers of 1 × 1 symmetry with a coverage of one water molecule per NaCl do not have a high enough adsorption energy to wet the surface.  相似文献   

10.
We report on a two-step method for oxidation of Pb(111) surfaces, which consists of low temperature (90K) adsorption of 02 and subsequent annealing to room temperature. In situ scanning tunnelling microscopy observation reveals that oxidation of Pb(111) can occur effectively by this method, while direct room temperature adsorption results in no oxidation. Temperature-dependent adsorption behaviour suggests the existence of a precursor state for 02 adsorption on Pb(111) surfaces and can explain the oxidation-resistance of clean Pb(111) surface at room temperature.  相似文献   

11.
The ground-state configurations of the Nbn (n = 2-11) clusters are studied through the first-principles calculations. It is found that niobium clusters (n = 2-11) tend to form compact structures with low symmetry. The clusters with 4, 8 and 10 atoms are found to be magic and have relatively large highest occupied-lowest unoccupied molecular orbital (HOMO-LUMO) gaps. The Nbn clusters possess low magnetic moments, which exhibit an odd-even oscillational character. The analyses of calculated electronic density and population of the lowest-energy niobium clusters for n = 2, 3, 5, 7, 9, 11 show that the total magnetic moments of Nbn originate mainly from a few Nb atoms with longer spacings between them in most cases, while they are located on two Nb atoms for n = 2, 3, 5. The total magnetic moments come mainly from the 4d local moments but with the exception of the Nb5 cluster.  相似文献   

12.
The effect of In doping on the electronic structure and optical properties of Sr2 TiO4 is investigated by a firstprinciples calculation of plane wave ultrasoft pseudopotentials based on density functional theory. The calculated results reveal that corner-shared TiO6 octahedra dominate the main electronic properties of Sr2TiO4 and the covalency of the Ti-O(1) bond in the ab plane is stronger than that of the Ti-O(2) bond along the c-axis. After In doping, there is a little lattice expansion in Sr2In0.125 Ti0.875 O4 and the interaction between the Ti-O bond near the impurity In atom is weakened. The binding energies of Sr2TiO4 and Sr2In0.125Ti0.875O4 estimated from the electronic structure calculations indicate that the crystal structure of Sr2In0.125 Ti0.875 O4 is still stable after doping, but its stability is lower than that of undoped Sr2TiO4. Moreover, the valence bands (VBs) of the Sr2In0.125Ti0.875O4 system consist of O 2p and In 4d states, and the mixing of O 2p and In 4d states makes the top VBs shift significantly to high energies, resulting in visible light absorption. The adsorption of visible light is of practical importance for the application of St2 TiO4 as a photocatalyst.  相似文献   

13.
Submonolayer Bi and Au adsorptions on the GaAs(001)-2× 4 surface are investigated by scanning tunnelling microscopy, low energy electron diffraction and first-principles calculations. The 1 ×4 and 3 × 4 reconstructed surface induced by Bi and Au, respectively, are revealed and their structural models are proposed based on experiments and first-principles calculations. Moreover, the validity of the recently proposed generalized electron counting (GEC) model [Phys. Rev. Lett. 97 (2006) 126103] is examined in detail by using the two surfaces. The GEC model perfectly explains the structural features, such Bi-1 × 4 surface and the 3x arrangement of four-atom Au as the characteristic short double-line structure in the clusters.  相似文献   

14.
Molecular dynamics simulations were carried out to investigate the adsorption of a low-energy C20 on a reconstructed silicon (001)-(2×12\times1) surface. The impact energies of the C20 fullerene range from 1 eV/atom to 5 eV/atom. After impacting, the C20 molecule is found to move along (011) direction and resides either in the trough or on the dimer at the end of our simulations. The lateral motion of C20 on the surface is dependent on its incident energy. Chemical bonds are formed between C20 and the surface. By the force field analysis, we show that the anisotropic molecule-surface interaction plays the leading role in the lateral motion of C20 as well as its preferable adsorption sites on the dimerized Si surface. These findings are consistent with experimental observations of C60 on Si (001) surface and small carbon clusters on solid surfaces.  相似文献   

15.
We have studied hydrogen adsorption on the Ge(1 1 1) c(2 × 8) surface using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy (ARPES). We find that atomic hydrogen preferentially adsorbs on rest atom sites. The neighbouring adatoms appear higher in STM images, which clearly indicates a charge transfer from the rest atom states to the adatom states. The surface states near the Fermi-level have been followed by ARPES as function of H exposure. Initially, there is strong emission from the rest atom states but no emission at the Fermi-level which confirms the semiconducting character of the c(2 × 8) surface. With increasing H exposure a structure develops in the close vicinity of the Fermi-level. The energy position clearly indicates a metallic character of the H-adsorbed surface. Since the only change in the STM images is the increased brightness of the adatoms neighbouring a H-terminated rest atom, we identify the emission at the Fermi-level with these adatom states.  相似文献   

16.
The structural and electronic properties of the 0.5 ML-terminated allyl mercaptan (ALM)/Si(IO0)-(2 x 1) surface are studied using the density functional method. The calculated absorption energy of the ALM molecule on the 0.5 ML-terminated ALM/Si(IO0)-(2 x 1) surface is 3.36eV, implying that adsorption is strongly favorable. The electronic structure calculations show that the ALM/Si(IO0)-(2 x 1), the clean Si(100)-(2 x 1), and the fully-terminated H/Si(IO0)-(2 ~ 1) surfaces have the nature of an indirect band gap semiconductor. The highest occupied molecular orbital is dominated by the ALM, confirming the mechanism proposed by Hossain for its chain reaction.  相似文献   

17.
La-modified PbTiO3 (PLT) thin films have been deposited by pulsed laser deposition on (100)InP substrates. The nominal target composition was selected to optimize piezoelectric properties of the material. It is shown that PLT deposition on as-received InP produces amorphous PLT films because of the presence of a native oxide on the substrate. PLT films deposited on bare InP have poor adhesion as a result of the surface reoxidation of the substrate due to the high oxygen pressure required for the deposition of stoichiometric PLT. To prevent substrate oxidation, several buffer oxides (CeO2, ZrO2, SrO, Y-stabilized ZrO2, MgO, and SrTiO3) have been grown in vacuum on (100)InP. Highest-quality heteroepitaxy was found with Y-stabilized ZrO2 (YSZ), being 𘜄¢{100} YSZ𘜄¢{100} InP oriented. The PLT deposited on this buffer layer is oriented with the [101] direction perpendicular to the substrate surface plane.  相似文献   

18.
Diffusion and desorption of platinum on the tungsten micro-crystal in the form of the W(1 1 1) oriented emitter tip has been studied using the field electron microscopy (FEM) technique. Diffusion of small dose of platinum (average thickness about 0.18 geometrical ML after spreading) on the thermally clean W emitter tip was studied at temperatures 648-742 K. Average activation energy for diffusion Ediff was found to lie between 1.16 ± 0.08 eVand 1.30 ± 0.16 eV. During annealing at the diffusion temperatures Pt-induced faceting of the emitter surface was visible in the neighbourhood of the {1 1 1} pole. The layer equilibrated in the diffusion process was stable at temperatures up to 1100 K where reduction of the high voltage at a fixed emission current, characteristic of alloying of Pt with W, was detected. Submonolayer of platinum (ΘPt = 0.18 ML) started to desorb at tip temperature ≥1780 K. The measurements of average activation energy for desorption of ‘zero coverage’ Pt (0.03 ML ≤ ΘPt ≤ 0.06 ML) from the entire W emitter surface were carried out at temperatures 1990-2170 K and yield the value of Edes = 5.19 ± 0.22 eV to 5.33 ± 0.19 eV. The results are compared with data for diffusion of individual Pt atoms and small clusters and with data for adsorption of Pt atoms on a planar W(1 1 0) surface. In discussion the atomic surface structure of the substrate, modified by the strong interaction of Pt with the W micro-crystal, is also taken into account.  相似文献   

19.
The enhancement of two order-of-magnitudes is observed in surface-enhanced Raman spectroscopy (SERS) of gases (CO, C2H2, C2H4, etc) adsorbed on nitric acid-roughened metal foil. In addition, some Raman lines of gases adsorbed on these active substrates show larger frequency shifts and linewidth broadening, compared with the Raman spectroscopy of free gases. Using the two-oscillator electromagnetic model, we explain this phenomenon. It is related to the large non-regular particles on the active substrate we prepared. It is found that the parameters of the surface-plasmon dispersion, the distance of molecules from the surface and the radius of particles play crucial roles on the relative large Raman shifts.  相似文献   

20.
The adsorption and decomposition of ethanethiol on GaN (0 0 0 1) surface have been investigated with first-principles calculations. The DFT calculations reveal that ethanethiol adsorbs dissociatively on the clean GaN (0 0 0 1) surface to form ethanethiolate and hydrogen species. An up limit coverage of 0.33 for ethanethiolate monolayer on GaN (0 0 0 1) surface is obtained and the position of the sulfur atom and the tilt angle of the thiolate chain are found to be very sensitive to the surface coverage. Furthermore, the reactivity of ethanethiol adsorption and further thermal decomposition reactions on GaN (0 0 0 1) surface is discussed by calculating the possible reaction pathways and ethene is found to be the major product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号