首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以燃烧器四角切圆布置的超超临界塔式锅炉炉膛内的流动换热为背景,利用Fluent软件通过数值模拟研究了一个物理和几何结构完全对称的三维炉膛内冷态流场变化情况,选用6个燃烧器喷嘴出口速度作为不同的工况来计算炉内的流场,速度变化范围为5~30 m/s,湍流模型采用雷诺应力模型。计算结果表明,随着出口气流速度的增大,流动呈现出的切圆半径越来越大;当喷嘴出口速度小于等于10 m/s时,在所用计算模型下,流体速度场呈中心对称结构,切圆中心位于中央;随着出口速度的持续增加,流场从中心对称结构逐步转变成非中心对称结构,切圆中心发生明显偏斜.数值结果表明,即使几何结构完全对称且边界物理条件也完全对称的燃烧器四角切圆布置的炉膛中的流动,仍然可能是非对称的,这是造成烟气侧热偏差的可能的原因之一。  相似文献   

2.
四角切圆燃烧锅炉炉膛内流体流动的实验研究   总被引:7,自引:0,他引:7  
本文采用一维LDA技术通过旋转方法对四角切圆燃烧煤粉锅炉炉膛内的冷态空气动力场进行了实验研究,得出了该流动定量化的流动特征:中心较明显的向下流动;下部燃烧器区外旋气流沿壁面向下流动;在屏式过热器下面仍然存在较强的旋转流动。本文所提供的数据可用于数值计算结果的检验。  相似文献   

3.
大型电站锅炉炉内三维燃烧温度场可视化实验研究   总被引:19,自引:0,他引:19  
本文利用 8只火焰图像探测器和相应的计算机图像采集处理系统,在一台 200 MW 四角切圆燃煤锅炉上进行了炉膛三维温度场可视化实验研究。现场实验结果表明,炉膛上部温度分布较低,并且呈典型的单峰形状;燃烧器区域的温度分布较高,能够反应四角切圆燃烧特性。用水冷枪抽气热电偶对温度场可视化结果进行了检验,相对误差在5%之内。三维温度场可视化结果刷新一次的时间不超过5秒,满足在线监测的要求。  相似文献   

4.
根据对象锅炉结构特性和煤质特性提出了三种燃尽风布置方式,并对燃尽风风率对不同布置方式下炉内燃烧和NO_x排放的过程进行了数值模拟分析。研究表明,燃尽风率为30%左右时,三种布置方式下锅炉各参数都表现出合理的水平,并且能够满足NO_x排放要求。两段送风的深度空气分级方式在煤粉的燃烧和燃尽,降低NO_x的排放量方面效果较好,更为适合四角切圆锅炉的低氮燃烧改造。  相似文献   

5.
本文设计了1 MW“W型”火焰煤粉燃烧实验台,并对焦作无烟煤进行了热态试验,分析了炉膛最高温度(火焰中心)的位置对W火焰的稳定形成的重要性,通过实验测得了其合理的相关位置。实验结果表明: W型火焰燃烧有很强的低负荷稳燃性,特别适合于低挥发份煤的燃烧。当火焰中心位置处于最下层二次风处时,炉内才能形成较好的W火焰;下炉膛中前后墙的壁面热负荷较为均匀,而左右墙的壁面热负荷分布呈“中间温度高两边温度低”的特性;上炉膛左右墙与前后墙的壁面温度分布基本一致。  相似文献   

6.
四角切向燃烧煤粉锅炉炉膛内空气动力场的数值研究   总被引:4,自引:0,他引:4  
1前言四角切向燃烧煤粉锅炉是目前应用较为广泛的一种炉型,在实际运行中有一些较为突出的优点。为深入研究煤粉在炉内的燃烧特性,炉内空气动力场的研究至关重要,本文数值模拟了四角切向燃烧煤粉锅炉炉内冷、热态情况下的流场,对其时均、湍流特性进行了分析,对气流的分布特性进行了研究.2研究对象本文的研究对象是锦州电厂二期工程的HG-670/14ty9型煤粉锅炉,燃烧器为多层四角切向布置,每角有4个一次风喷口,6个二次风喷口,1个三次风喷口。锅炉各部分尺寸及燃烧器的布置见图1、图2。热态流场的模拟对象是实际锅炉。模拟工况基本按…  相似文献   

7.
设计了基于微通道换热器的分离式热管空调系统,针对充液率、室内外温差以及冷凝器布置方式对空调性能的影响进行了试验研究。结果表明:高充液率和低充液率均会使分离式热管空调换热性能降低,系统最佳充液率为110%左右;室内外温差对分离式热管空调性能的影响显著,传热量随着温差的增大而增大,分离式热管空调传热量在20℃温差时比8℃温差时增加了348%;微通道冷凝器垂直布置时比平行布置时空调系统的充注量小,制冷量大。  相似文献   

8.
高温高压条件下受限空间内旋流喷雾与横向气流的掺混规律尚不清楚,本文对圆形通道内高温燃气与旋流喷雾掺混蒸发过程进行了三维数值模拟,探究流场特征与掺混规律,研究增强流场掺混效果的方法。研究结果表明,四喷嘴周向均匀布置可以使雾化液滴群较均匀的充满掺混空间。相邻喷嘴中间区域液滴群浓度较高,气相温降较大。靠近壁面区域出现多组小尺度的旋涡对结构,小尺度涡结构的发展是促进掺混蒸发过程的主要方式。喷嘴雾化锥角、轴向倾角、切向倾角影响雾化液滴滞留时间及喷雾轴向贯穿深度,进而对掺混效果有较大影响,选择适中的喷嘴雾化角及入射角有利于流场掺混均匀。  相似文献   

9.
由于燃料球的随机分布和球床的壁面效应,球床式高温气冷堆堆芯孔隙率分布会有一定的不均匀性。深入认识壁面漏流、随机孔隙率对球床温度分布均匀性的影响对进一步提高高温气冷堆冷却剂出口温度及其安全性具有重要意义。本文采用多孔介质模型实现了对堆芯球床壁面漏流、随机孔隙率效应的数值模拟。结果表明,由于壁面漏流效应,壁面附近局部区域冷却剂最大速度会比中心高50%,对球床温度影响则不大。中心区域局部极小、极大孔隙率只对很小区域内流速和温度有影响,但温度变化幅值很小。球床中心随机孔隙率使冷却剂速度波动小于13%,对球床温度影响很小。  相似文献   

10.
本文通过对发汗冷却的多孔区域进行二维非热平衡数值模拟,研究了多孔介质区域进口处对流换热系数、冷却剂流量局部降低以及多孔介质受热表面热流密度局部增大对青铜、陶瓷两种不同多孔材料的温度场的影响。计算结果表明,冷却剂在进口处与多孔壁面对流换热系数的增大使多孔介质内部趋向于热平衡;热端壁面对流换热系数、冷却剂流量的局部变化对陶瓷多孔壁面在该局部区域的影响要大于青铜多孔壁面,但青铜多孔壁面受影响的区域更大,而冷却剂流量的局部降低对两种材料固体、流体间温差的影响程度基本一致。  相似文献   

11.
When sodium- and potassium-containing fuel additives are used in internal combustion engines, the bright fluorescence that sodium and potassium atoms emit in the burned gas zone offers a large potential for spectroscopic combustion analysis. To utilize this potential quantitatively, it is crucial to fully understand all physical and chemical processes involved. This includes (1) the temperature dependence of the fluorescence intensity due to gas-phase collisions, (2) the pressure, temperature and equivalence ratio effects on thermodynamic equilibria in the burned gas zone and (3) pressure and temperature-dependent line shapes for quantitative correction of fluorescence reabsorption. High-speed imaging of sodium and potassium fluorescence in a spark-ignited, direct injection, single-cylinder research engine was conducted under well-controlled homogeneous operating conditions at equivalence ratios ranging from 0.71 to 1.43, cylinder pressure from 3 to 15 bar and burned gas temperatures from 1,700 to 2,600 K. This study demonstrates that the influence of pressure, temperature and equivalence ratio on the fluorescence signals of sodium and potassium is understood quantitatively and establishes the potentials and limitations of this tool for burned gas temperature measurements with high temporal and two-dimensional spatial resolution in a homogeneously operated internal combustion engine.  相似文献   

12.
The temperature field in combustion chamber of spark ignition engine is measured using laser shearing interferometry and high-speed photography in this paper. A set of experimental facility is set up. The relationship equation between the interference fringe image and temperature distribution is deduced. Changing the shearing interferometry quantity, the two-dimensional temperature field of engine combustion chamber and flame propagation can be measured quantitatively by image processing. The test results indicate that the shearing interferometric method has a strong vibration resistance, and a simple and reliable optical path. The temperature distribution and the temperature gradient are different in different zones. The temperature is highest in the burning zone and the temperature gradient is large. The temperature is lower in the burned zone and the temperature gradient is smaller. The temperature is lowest in the unburned zone but the temperature gradient is large. At the initial period of combustion, the flame propagation velocity is low. In the combustion process, the flame front in the approximate spherical shape pushes toward the unburned zone, and the flame propagation velocity starts to decrease. It rapidly increases until it reaches the maximum value as the combustion process going on, and then it gradually decreases until it has burned in the entire combustion chamber.  相似文献   

13.
The outwardly propagating spherical flame (OPF) method is popularly used to measure the laminar flame speed (LFS). Recently, great efforts have been devoted to improving the accuracy of the LFS measurement from OPF. In the OPF method, several assumptions are made. For examples, the burned gas is assumed to be static and in chemical equilibrium. However, these assumptions may not be satisfied under certain conditions. Here we consider low-pressure and super-adiabatic propagating spherical flames, for which chemical non-equilibrium exists and the burned gas may not be static. The objective is to assess the chemical non-equilibrium effects on the accuracy of LFS measurement from the OPF method. Numerical simulations considering detailed chemistry and transport are conducted. Stoichiometric methane/air flames at sub-atmospheric pressures and methane/oxygen flames at different equivalence ratios are considered. At low pressures, broad heat release zone is observed and the burned gas cannot quickly reach the adiabatic flame temperature, indicating the existence of chemical non-equilibrium of burned gas. Positive flow in the burned gas is identified and it is shown to become stronger at lower initial pressure. Consequently, the LFS measurement from OPF at low pressures is not accurate if the burned gas is assumed to be static and at chemical equilibrium. For super-adiabatic spherical flames, the burned gas speed is found to be negative due to the local temperature overshoot at the flame front. Such negative speed of burned gas can also reduce the accuracy of LFS measurement. It is recommended that the direct method measuring both flame propagation speed and flow speed of unburned gas should be used to determine the LFS at low pressures or for mixtures with super-adiabatic flame temperature.  相似文献   

14.
In our previous numerical studies [Nishioka Makihito, Zhenyu Shen, and Akane Uemichi. “Ultra-lean combustion through the backflow of burned gas in rotating counterflow twin premixed flames.” Combustion and Flame 158.11 (2011): 2188–2198. Uemichi Akane, and Makihito Nishioka. “Numerical study on ultra-lean rotating counterflow twin premixed flame of hydrogen–air.” Proceedings of the Combustion Institute 34.1 (2013): 1135–1142]. we found that methane– and hydrogen–air rotating counterflow twin flames (RCTF) can achieve ultralean combustion when backward flow of burned gas occurs due to the centrifugal force created by rotation. In this study, we investigated the mechanisms of ultralean combustion in these flames by the detailed numerical analyses of the convective and diffusive transport of the main species. We found that, under ultralean conditions, the diffusive transport of fuel exceeds its backward convective transport in the flame zone, which is located on the burned-gas side of the stagnation point. In contrast, the relative magnitudes of diffusive and convective transport for oxygen are reversed compared to those for the fuel. The resulting flows for fuel and oxygen lead to what we call a ‘net flux imbalance’. This net flux imbalance increases the flame temperature and concentrations of active radicals. For hydrogen–air RCTF, a very large diffusivity of hydrogen enhances the net flux imbalance, significantly increasing the flame temperature. This behaviour is intrinsic to a very lean premixed flame in which the reaction zone is located in the backflow of its own burned gas.  相似文献   

15.
Pilot flames, created by additional injectors of pure fuel, are often used in turbulent burners to enhance flame stabilization and reduce combustion instabilities. The exact mechanisms through which these additional rich zones modify the flame anchoring location and the combustion dynamics are often difficult to identify, especially when they include unsteady hydrodynamic motion. This study presents Large Eddy Simulations (LES) of the reacting flow within a large-scale gas turbine burner for two different cases of piloting, where either 2 or 6% of the total methane used in the burner is injected through additional pilot flame lines. For each case, LES shows how the pilot fuel injection affects both flame stabilization and flame stability. The 6% case leads to a stable flame and limited hydrodynamic perturbations in the initial flame zone. The 2% case is less stable, with a small-lift-off of the flame and a Precessing Vortex Core (PVC) in the cold stabilization zone. This PVC traps some of the lean cold gases issuing from the pilot passage stream, changes the flame stabilization point and induces instability.  相似文献   

16.
High-concentration H2S formed in the reduction zone of pulverized coal air-staged combustion can result into the high temperature corrosion of water wall tube of boiler, so it is of great importance to accurately predict H2S concentration for the safe operation of boilers and burners. H2S formation and evolution depends on two steps: the sulfur release from coal conversion and gas-phase reactions of sulfur species. In this study, the sulfur release characteristics from the pyrolysis of 17 coals, including 5 lignite, 9 bituminous coals and 3 anthracites, are investigated in a drop tube furnace (DTF). Sulfur release model is developed to describe the relationship between sulfur release and coal types. A global gas-phase reaction mechanism of sulfur species composed of ten reactions is used to calculate and predict the formation and evolution of H2S, COS and SO2 in the reduction zone of pulverized coal air-staged combustion. A wide range of air-staged combustion experiments of 17 coals are conducted in the DTF at different temperatures and stoichiometric ratios to validate the developed model. The results show that the prediction errors of sulfur species, including SO2, H2S and COS, are within ± 30%, which indicates that the developed prediction model of sulfur species is of great assistance for CFD modeling of actual engineering application.  相似文献   

17.
Detailed investigations of turbulent spray combustion are very challenging due to the complexity of the underlying physicochemical processes. Experimentally, laboratory-scale burners are increasingly used to investigate these processes and support model development. One ultimate objective of these studies would be to deliver suitable benchmark data. In the present paper, the focus is similar but relying exclusively on direct numerical simulations. Conditions close that found in lab-scale burners are considered in the simulations, so that direct comparisons will ultimately become possible. The current analysis concentrates on the temporal evolution of temperature and concentrations of OH, CH2O, and CH4. The profiles of these variables show very complex features, therefore separate zones corresponding to characteristic physicochemical regimes have been tracked in time and space. It is found that, based on the temperature profile, four different zones coexist in the domain, associated to different degrees of competition between evaporation and reaction. It is observed that high concentrations of CH2O and CH4 can be used to delineate between three characteristic locations: 1) the evaporation zone; 2) close to the jet tip, at high temperatures; and 3) regions where evaporated droplets are entrained by mixing. This study demonstrates that direct numerical simulation of small spray burners can be used to deliver important information and to contribute useful benchmark data.  相似文献   

18.
In the near-burner region of pulverized coal burners, two zones exist, with very different oxygen concentrations. The first zone is a locally reducing environment, caused by the fast release of volatiles from a region of dense coal particles, and the second zone, which is surrounding the first zone, is a hot oxidizing environment. The transition of coal particles from the reducing zone to the oxidizing zone affects early stage coal combustion characteristics, such as devolatilization, ignition and particle temperature history. In this work, we used a two-stage Hencken flat-flame burner to simulate the conditions that coal particles experience in practical combustors when they transition from a reducing environment to an oxidizing environments. The composition of the reducing environment was chosen to approximate that of a typical coal volatile. Three oxygen concentrations (5, 10 and 15 vol%) in the “ambient” oxidizing environment were tested, corresponding to those at different distances downstream from a commercial burner. The corresponding gas temperatures for the oxidizing environments were adjusted for the different oxygen concentrations such that the “volatile” flame temperatures were the same, as this is what would be expected in a commercial combustor. High speed videography was used to obtain the ignition characteristics, and RGB color pyrometry was used to measure particle surface temperatures. Two different sizes of coal particles were used. It is found that when particles undergo a reducing-to-oxidizing transition at high temperatures, the particles are preheated such that the critical factor for ignition delay is point at which the particle is in the presence of oxygen, not the concentration of oxygen. The ignition delay of large particles is found to be 53% longer than that of small particles due to their higher thermal mass and slower devolatilization. The oxygen concentration in the ambient have a negligible effect on early-stage particle temperatures.  相似文献   

19.
Laser-induced fluorescence of OH and CH2O was imaged to investigate the flame stabilization mechanism in a flameholder with a Mach 2.4 free stream. Ethylene was burned in a rectangular cavity with two points of injection: the aft wall and the cavity floor. When injected from the aft wall, the fuel came into immediate contact with hot combustion products from the reaction zone under the shear layer. Primary combustion occurred under the shear layer and in the aft region of the cavity volume. In contrast, when fuel was injected from the floor, a jet-driven recirculation zone of hot products near the upstream wall of the cavity served as a flameholder. The reaction then occurred on the underside of the shear layer. In conditions near lean blowout, significant changes in the flameholding mechanisms were observed. Improved CH2O fluorescence signal was obtained by taking advantage of the long fluorescence lifetime at low pressures and delaying the camera gate to reduce the background signal.  相似文献   

20.
单只水平浓缩煤粉燃烧器在1MW燃烧试验台上的试验研究   总被引:13,自引:0,他引:13  
单只水平浓缩煤粉燃烧器在1MW燃烧试验台上的试验研究孙绍增,吴少华,李争起,杨明新,王新雷,陈力哲,庞丽君,邢春礼,朱彤,孙恩召,秦裕琨(哈尔滨工业大学动力工程系哈尔滨150001)关键词:水平浓淡燃烧,煤粉燃烧器,稳燃,低NO_x一、引言电力工业对?..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号