首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用Cu2+离子注入的方式在熔融石英和石英晶体上分别制备了平面光波导结构.通过棱镜耦合实验测试了两种光波导的导模特性,结果表明:在同样的注入条件下熔融石英上形成了增加型的光波导结构,而石英晶体上形成了位垒型的光波导结构.研究了退火温度对两种光波导导模折射率的影响,熔融石英光波导中导模的折射率随着退火温度的升高而降低,而石英晶体光波导中导模的折射率随着退火温度的升高先增加后降低.为了进一步分析离子注入两种材料形成光波导的微观机理,利用SRIM模拟了Cu2+离子注入两种材料的电子能量损失和核能量损失,并且模拟了两种光波导结构的折射率分布.模拟结果表明:熔融石英光波导的主要形成原因是离子注入表面的折射率大于其体材料的折射率,而石英晶体光波导的主要形成原因是离子射程末端的折射率小于其体材料的折射率.因此,在熔融石英光波导的形成中电子能量损失起主要作用,而在石英晶体光波导的形成中核能量损失起主要作用.  相似文献   

2.
It is well known that the refractive indices of lots of materials can be modified by ion implantation, which is important for waveguide fabrication. In this work the effect of Ar and Zn ion implantation on silica layers was investigated by Rutherford Backscattering Spectrometry (RBS) and Spectroscopic Ellipsometry (SE). Silica layers produced by chemical vapour deposition technique on single crystal silicon wafers were implanted by Ar and Zn ions with a fluence of 1–2?×1016 Ar/cm2 and 2.5?×1016 Zn/cm2, respectively. The refractive indices of the implanted silica layers before and after annealing at 300°C and 600°C were determined by SE. The migration of the implanted element was studied by real-time RBS up to 500°C. It was found that the implanted Ar escapes from the sample at 300°C. Although the refractive indices of the Ar-implanted silica layers were increased compared to the as-grown samples, after the annealing this increase in the refractive indices vanished. In case of the Zn-implanted silica layer both the distribution of the Zn and the change in the refractive indices were found to be stable. Zn implantation seems to be an ideal choice for producing waveguides.  相似文献   

3.
Abstract

Ion implantation can be used to introduce network damage and to alter the chemical composition in glasses. Structural changes can be inferred from IR measurements near 1000 cm?1 and by optical absorption near 2150 Å. Implantation-induced damage decreases the implanted volume in fused silica with consequent changes in the refractive index, the near-surface hardness, and the tensile surface stress. Prior work in these areas is reviewed. Implantation into alkali silicate glasses depletes the alkali content in the implanted region. These changes allow preferential surface crystallization in Li2O-2SiO2 glasses. Crystallization of amorphous SiO2 can be induced by implantation of Li. Insight into the crystallization process is obtained by following the associated ion movement by elastic recoil detection (ERD) and optical techniques. Implantation of 20keV H shows that saturation of implanted H-sites in fused silica occurs at about 2.2 × 1021 H/cm3 in agreement with free volume estimates of the maximum number of available interstitial sites. Details of H and D interactions in fused silica were studied as a function of fluence and temperature. Results are of interest in studies of corrosion in glasses considered for nuclear waste encapsulation and for components in fusion reactors.

IV Summary  相似文献   

4.
The Si solar cells were irradiated with high energy hydrogen ions of 10, 30, 60 and 120?keV at the dose rate of 1017 H+ ions (proton)/cm2. The structural, optical and electrical properties of the implanted samples and fabricated cells were studied. The implantation induced defects bringing structural changes before and after annealing was evidenced by the transmission electron microscopy. The Raman spectrum showed a change of crystalline to amorphous state at 480?cm?1 when the sample was implanted by hydrogen ion of 30?keV energy. Formation of nanocrystallite layers were observed after annealing. The electroluminescence images showed that hydrogen-related defect centers were involved in the emission mechanism. The photoluminescence emission from the implanted cells was attributed to nanocrystallite layers. From current–voltage measurements, the conversion efficiencies of implanted Si solar cells were found lower than the un-implanted reference cell. The ion implantation did not passivate the defects rather acted as recombination centers.  相似文献   

5.
The effects of heavy-and light-ion bombardment on defect formation in CaO have been investigated by UV-absorption spectroscopy and volume measurements. While 500 keV Ar or Ca implantation produces only F+ centers, 240 keVH produces both F+ and F centers at a F+ to F ratio of 5.6 to 1. On the other hand, when an argon implanted sample is subsequently bombarded with hydrogen, about 30% of the F+ centers anneal during 1 ×1014 H/cm2; at higher H fluences, new F+ and F centers are produced. An effect of energy partition between ionization and nuclear/atomic collision processes for the incident ions on the charge state of the resulting defect is thus clearly demonstrated.

The formation and annealing of these defects are accompanied by volume changes in the ion implanted surface layer which can be monitored in sltu with a cantilever beam technique. The measurements show volume expansion of the order of 1.5% following 1016 500 keV Ar implantation; subsequent implantation of 1018 240 keV H compacts the previously expanded material by 25 %. These results are in qualitative agreement with the optical data and seem to indicate that volume changes are associated with the formation and annealing of F+ centers.  相似文献   

6.
Wei-Yuan Luo 《中国物理 B》2022,31(5):54214-054214
Oxygen ions (O+) were implanted into fused silica at a fixed fluence of 1×1017 ions/cm2 with different ion energies ranging from 10 keV to 60 keV. The surface roughness, optical properties, mechanical properties and laser damage performance of fused silica were investigated to understand the effect of oxygen ion implantation on laser damage resistance of fused silica. The ion implantation accompanied with sputtering effect can passivate the sub-/surface defects to reduce the surface roughness and improve the surface quality slightly. The implanted oxygen ions can combine with the structural defects (ODCs and E' centers) to reduce the defect densities and compensate the loss of oxygen in fused silica surface under laser irradiation. Furthermore, oxygen ion implantation can reduce the Si-O-Si bond angle and densify the surface structure, thus introducing compressive stress in the surface to strengthen the surface of fused silica. Therefore, the laser induced damage threshold of fused silica increases and the damage growth coefficient decreases when ion energy up to 30 keV. However, at higher ion energy, the sputtering effect is weakened and implantation becomes dominant, which leads to the surface roughness increase slightly. In addition, excessive energy aggravates the breaking of Si-O bonds. At the same time, the density of structural defects increases and the compressive stress decreases. These will degrade the laser laser-damage resistance of fused silica. The results indicate that oxygen ion implantation with appropriate ion energy is helpful to improve the damage resistance capability of fused silica components.  相似文献   

7.
A new method of producing a glass-ceramic surface layer on fused silica has been demonstrated using Li+-ion implantation and relatively low-temperature annealing. Infrared reflection spectroscopy (IRS) was used to study the effects of ion implantation on structural changes. Isochronal annealing of samples implanted with 250 keV Li+/cm2 brings about a dramatic change in the IRS spectra at 800°C in that it becomes identical with that of α-quartz. The dependence of the degree of crystallization on temperature, Li+-ion fluence, and silica type was studied.  相似文献   

8.
Results obtained in the fabrication of slab and strip waveguides by ion implantation into fused quartz are discussed. Using a step-index waveguide model the increase in refractive index is calculated. The optical loss is smaller than 1 dB/cm at λ = 568 nm without annealing. The properties of strip waveguides fabricated by ion implantation through photoresist masks of thicknesses from 0.4 μm to 0.8 μm are described. A bright fluorescence is observed with emission at 530 nm and 640 nm and its dependence on ion fluence and ion energy is measured.  相似文献   

9.
We report on the formation of the planar waveguide by 550 keV O ion followed by 250 keV O ion implantation in lithium niobate (LiNbO3), at fluences of 6 × 1014 ions/cm2 and 3 × 1014 ions/cm2, respectively. The Rutherford backscattering/channeling spectra have shown the atomic displacements in the damage region before and after annealing. A broad and nearly homogeneous damage layer has been formed by double-energy ion implantation after annealing. Both the dark mode spectra and the data of refractive index profile verified that the extraordinary refractive index was enhanced in the ion implanted region of LiNbO3. A homogeneous near-field intensity profile was obtained by double-low-energy ion implantation. There is a reasonable agreement between the simulated modal intensity profile and the experimental data. The estimated propagation loss is about 0.5 dB/cm.  相似文献   

10.
Si-SiO2 structures irradiated with 11-MeV electrons for 10 s and then implanted with B+ ions with an energy of 10 keV at a dose of 1.0×1012 cm-2 through the oxide were annealed at different temperatures. MOS capacitors including such oxide layers were studied by quasi-static C/V and thermally stimulated current (TSC) methods. A comparison of the radiation defect annealing of double-treated (electron-irradiated and ion-implanted) samples and of implanted-only samples was carried out. It is shown that a preceding low-dose high-energy electron irradiation of the samples leads to a lowering of the annealing temperature of radiation defects introduced by ion implantation. After annealing at 500 °C for 15 min, no TSC spectra for the double-treated samples were observed. The spectra of the other samples (which were not previously irradiated) showed that after the same thermal treatment only some of the radiation defects introduced by ion implantation are annealed. The difference between the annealed interface state density of previously electron-irradiated and current MOS structures is also demonstrated. A possible explanation of the results is proposed . PACS 61.82.Fk; 85.40.Ry; 61.80.Fe  相似文献   

11.
Abstract

Ion implantation in LiNbO3 can be used to modify the refractive index. The change in indices, n 0 n e results from the damage formed by energy deposited by the (dE/dx)nuclear collisions between the ions and the lattice and is independent of the ion species. A saturation change in index of some ?7% occurs after a deposition of 1023 keV cm?3 at 300K, greater changes of ?9 % occur with implants at 77K. Annealing studies indicate the optical absorption formed during irradiation is removed below 200°C whereas the index changes exist up to 400°C. For optical waveguide production a negative change in the index is not ideal as the damaged layer cannot directly act as the region of optical confinement. However the (dE/dx)electronic term is unimportant and so we have been able to form optical waveguides by ion implantation with light energetic ions (e.g. MeV He+ ions) because the damaged layer is then formed beneath an unchanged high index surface layer. This retains the desirable electrooptic properties of the single crystal LiNbO3. The experimentally observed waveguide modes are in accord with our theoretical predictions of the refractive index profiles.  相似文献   

12.
利用金属蒸发真空多弧离子源(MEVVA源)注入机将Ti+离子注入到高纯石英玻璃衬底中,离子注入的加速电压为20 k V,注入剂量为1.5×1017和3×1017ions/cm2,将注入样品在氧气气氛下进行热退火处理,制备了TiO2纳米薄膜。采用光吸收谱、拉曼光谱、X射线光电子能谱、扫描电子显微镜和透射电子显微镜对注入样品进行了测试和表征,分析了TiO2薄膜的形成机理。在热退火过程中衬底中离子注入的Ti原子向外扩散到衬底表面被氧化形成了TiO2。TiO2的形成、晶粒尺寸和晶体结构依赖于热退火温度,而形成TiO2薄膜的厚度主要受离子注入剂量和热退火时间的影响。实验结果表明,该方法制备的TiO2纳米薄膜将有望应用于制备具有光催化、自清洁等特殊性能的自清洁玻璃。  相似文献   

13.
A method for calculating the refractive index of optical fused silica by applying the model of effective permittivity of composite homogeneous media is proposed and realized. The calculation was performed using the tabular data of the refractive index of crystalline α quartz and the ratio of the quartz glass and α quartz densities. It was suggested that fused silica contains nanosized pores with a glass filling number q immersed in a matrix with a density differing from the α quartz density by a factor of κ, where κ is slightly less than unity. It was established that the Maxwell-Garnett model makes it possible to calculate the refractive index of quartz glass and its dispersion in the transparency range (404 nm ≤ λ ≤ 671 nm) with a deviation less than 0.0002 from the tabular values. The calculated and experimental values coincide at q = 0.155 and κ = 0.986.  相似文献   

14.
高剂量的磷离子注入4H-SiC(0001)晶面,注入速率从1.0×1012到4.0×1012 P+ cm-2s-1变化,而注入剂量固定为2.0×1015 P+ cm-2。室温注入,1500oC的高温下退火。利用光荧光和拉曼谱分析注入产生的晶格损伤以及退火后的残余缺陷。通过霍耳测试来分析注入层的电学性质。基于上述测试结果,发现通过减小磷离子的注入速率,极大地减少了注入层的损伤及缺陷。考虑到室温注入以及相对较低的退火温度(1500 oC),在注入速率为1.0×1012 P+ cm-2s-1及施主浓度下为4.4×1019 cm-3的条件下,获得了非常低的方块电阻106 Ω/sq。  相似文献   

15.
《Surface science》2003,470(1-2):219-228
The evolution of buried structures of cobalt disilicide, which are formed in a Si(1 0 0) matrix by 400 keV Co+ ion implantation at 875 K substrate temperature with subsequent rapid thermal annealing at 1275 K was studied by cross-sectional transmission electron microscopy (X-TEM). The analysis of identical samples with successive variations of the implanted doses and annealing times allows a detailed observation of the role of defects, created by the ion flux, on the process of ripening and growth of CoSi2 precipitates. We found that transport of the implanted material along diffusive links leads to the formation of a secondary CoSi2 distribution between the main layer and the surface. Post-implantation annealing results in the evolution of defects into dislocations, which affects the mobility and therefore the growth of CoSi2 precipitates. Increasing the annealing time leads to the separate growth of precipitates in each layer. The result is not the formation of a single uniform buried layer because the distance between the individual layers is too large due to a screening effect, which operates during the ripening stage.  相似文献   

16.
Although electronics technologies have made great advances in device speed, optical devices can function in the time domain inaccessible to electronics. In the time domain less than 1 ps, optical devices have no competition. Photonic or optical devices are designed to switch and process light signals without converting them to electronic form. The major advantages that these devices offer are speed and preservation of bandwidth. The switching is accomplished through changes in refractive index of the material that are proportional to the light intensity. The third-order optical susceptibility, χ(3), known as the optical Kerr susceptibility which is related to the non-linear part of the total refractive index, is the nonlinearity which provides this particular feature. Future opportunities in photonic switching and information processing will depend critically on the development of improved photonic materials with enhanced Kerr susceptibilities, as these materials are still in a relatively early stage of development. Different glass systems are now under investigation to increase their nonlinearity by introducing a variety of modifiers into the glass-network. Ion implantation is an attractive method for inducing colloid formation at a high local concentration unattainable by the melt-glass fabrication process and for confining the non-linearities to specific patterned regions in a variety of host matrices. Recent works on metal-ion implanted colloid generation in bulk fused silica glasses have shown that these nanocluster-glass composites under favourable circumstances have significant enhancement of χ(3) with picosecond to femtosecond temporal responses.  相似文献   

17.
The electrical properties of cadmium, zinc, and sulfur ion-implanted layers in gallium arsenide have been measured by the van der Pauw-Hall technique. Ion implantation was performed with the substrates held at room temperature. The dependence of sheet resistivity, surface carrier concentration, and mobility on ion dose and on post-implantation anneal temperature was determined. In the case of 60 keV Cd+ ions implanted into n-type substrates, a measurable p-type layer resulted when samples were annealed for 10 minutes at a temperature in the range 600—900°C. After annealing at 300—900°C for 10 minutes, 100 per cent electrical activity of the Cd ions resulted for ion doses ≤ 1014/cm2.

The properties of p-type layers produced by implantation of 85 keV Zn+ ions were similar to those of the 60 keV cadmium-implanted layers, in that no measurable p-type behavior was observed in samples annealed below a relatively high temperature. However, in samples implanted with 20 keV Zn+ ions a p-type layer was observed after annealing for 10 minutes at temperatures as low as 300°C.

Implantation of sulfur ions into p-type GaAs substrates at room temperature resulted in the formation of a high resistivity n-type layer, evcn before any annealing was performed. Annealing at temperatures up to 200°C or above 600°C lowered the resistivity of the layer, while annealing in the range 300—500°C eliminated the n-type layer.  相似文献   

18.
Nanophotonic structures combining electronic confinement in nanocrystals with photon confinement in photonic structures are potential building blocks of future Si-based photonic devices. Here, we present a detailed optical investigation of active planar waveguides fabricated by Si+-ion implantation (400 keV, fluences from 3 to 6×1017 cm−2) of fused silica and thermally oxidized Si wafers. Si nanocrystals formed after annealing emit red-IR photoluminescence (PL) (under UV-blue excitation) and define a layer of high refractive index that guides part of the PL emission. Light from external sources can also be coupled into the waveguides (directly to the polished edge facet or from the surface by applying a quartz prism coupler). In both cases the optical emission from the sample facet exhibits narrow polarization-resolved transverse electric and transverse magnetic modes instead of the usual broad spectra characteristic of Si nanocrystals. This effect is explained by a theoretical model which identifies the microcavity-like peaks as leaking modes propagating below the waveguide/substrate boundary. We present also permanent changes induced by intense femtosecond laser exposure, which can be applied to write structures like gratings into the Si-nanocrystalline waveguides. Finally, we discuss the potential for application of these unconventional and relatively simple all-silicon nanostructures in future photonic devices.  相似文献   

19.
利用真空蒸发法在石英玻璃衬底上制备了ZnS薄膜,将能量80 keV,剂量1×1017 cm-2的Ti离子注入到薄膜中,并将注入后的ZnS薄膜进行退火处理,退火温度500—700 ℃.利用X射线衍射(XRD)研究了薄膜结构的变化,利用光致发光(PL)和光吸收研究了薄膜光学性质的变化.XRD结果显示,衍射峰在500 ℃退火1 h后有一定程度的恢复;光吸收结果显示,离子注入后光吸收增强,随着退火温度的上升,光吸收逐渐降低,吸收边随着退火温度的提高发生蓝移;PL显示,薄 关键词: ZnS薄膜 离子注入 X射线衍射 光致发光  相似文献   

20.
Crystals of lithium niobate LiNbO3 are implanted with 60-keV Cu? ions at different ion fluxes to a fluence of 2 × 1017 ions/cm2. The structure and the linear and nonlinear optical properties of the implanted layers are investigated. The optical transmission and ion-induced photon spectra of the LiNbO3 crystals are measured in the course of implantation. It is revealed that the implantation brings about the formation of complex nanocomposites consisting of metallic copper nanoparticles and nanodomains of the matrix. The distributions of nanoparticles and nanodomains in the implanted layers do not correlate with each other. It is shown that the variations in the linear and nonlinear optical absorption of the nanocomposites are predominantly determined by the changes in the chemical composition and the structure of the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号