首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure and Sm-doped ZnO nanoparticles were synthesized applying a simple sonochemical method. The nanocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques which confirmed the successful synthesis of the doped sonocatalyst. The sonocatalytic degradation of Acid Blue 92 (AB92), a model azo dye, was more than that with sonolysis alone. The 6% Sm-doped ZnO nanoparticles had a band gap of 2.8 eV and demonstrated the highest activity. The degradation efficiency (DE%) of sonolysis and sonocatalysis with undoped ZnO and 6% Sm-doped ZnO was 45.73%, 63.9%, and 90.10%, after 150 min of treatment, respectively. Sonocatalytic degradation of AB92 is enhanced with increasing the dopant amount and catalyst dosage and with decreasing the initial AB29 concentration. DE% declines with the addition of radical scavengers such as chloride, carbonate, sulfate, and tert-butanol. However, the addition of enhancers including potassium periodates, peroxydisulfate, and hydrogen peroxide improves DE% by producing more free radicals. The results show adequate reusability of the doped sonocatalyst. Degradation intermediates were recognized by gas chromatography–mass spectrometry (GC–MS). Using nonlinear regression analysis, an empirical kinetic model was developed to estimate the pseudo-first-order constants (kapp) as a function of the main operational parameters, including the initial dye concentration, sonocatalyst dosage, and ultrasonic power.  相似文献   

2.
The degradation of Acid Blue 92 (AB92) solution was investigated using a sonocatalytic process with pure and neodymium (Nd)-doped ZnO nanoparticles. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The 1% Nd-doped ZnO nanoparticles demonstrated the highest sonocatalytic activity for the treatment of AB92 (10 mg/L) with a degradation efficiency (DE%) of 86.20% compared to pure ZnO (62.92%) and sonication (45.73%) after 150 min. The results reveal that the sonocatalytic degradation followed pseudo-first order kinetics. An empirical kinetic model was developed using nonlinear regression analysis to estimate the pseudo-first-order rate constant (kapp) as a function of the operational parameters, including the initial dye concentration (5–25 mg/L), doped-catalyst dosage (0.25–1 g/L), ultrasonic power (150–400 W), and dopant content (1–6% mol). The results from the kinetic model were consistent with the experimental results (R2 = 0.990). Moreover, DE% increases with addition of potassium periodate, peroxydisulfate, and hydrogen peroxide as radical enhancers by generating more free radicals. However, the addition of chloride, carbonate, sulfate, and t-butanol as radical scavengers declines DE%. Suitable reusability of the doped sonocatalyst was proven for several consecutive runs. Some of the produced intermediates were also detected by GC–MS analysis. The phytotoxicity test using Lemna minor (L. minor) plant confirmed the considerable toxicity removal of the AB92 solution after treatment process.  相似文献   

3.
In the present study, a porous clay-like support with unique characteristics was used for the synthesis and immobilization of ZnO nanostructures to be used as sonocatalyst for the sonocatalytic decolorization of methylene blue (MB) dye in the aqueous phase. As a result, the sonocatalytic activity of ZnO–biosilica nanocomposite (77.8%) was higher than that of pure ZnO nanostructures (53.6%). Increasing the initial pH from 3 to 10 led to increasing the color removal from 41.8% to 88.2%, respectively. Increasing the sonocatalyst dosage from 0.5 to 2.5 g/L resulted in increasing the color removal, while further increase up to 3 g/L caused an obvious drop in the color removal. The sonocatalysis of MB dye over ZnO–biosilica nanocomposite was temperature-dependent. The presence of methanol produced the most adverse effect on the sonocatalysis of MB dye. The addition of chloride and carbonate ions had a negligible effect on the sonocatalysis, while the addition of persulfate ion led to increasing the color removal from 77.8% to 99.4% during 90 min. The reusability test exhibited a 15% drop in the color removal (%) within three consecutive experimental runs. A mineralization efficiency of 63.2% was obtained within 4 h.  相似文献   

4.
The transparent nanocrystalline thin films of undoped zinc oxide and Mn-doped (Zn1−xMnxO) have been deposited on glass substrates via the sol–gel technique using zinc acetate dehydrate and manganese chloride as precursor. The as-deposited films with the different manganese compositions in the range of 2.5–20 at% were pre-heated at 100 °C for 1 h and 200 °C for 2 h, respectively, and then crystallized in air at 560 °C for 2 h. The structural properties and morphologies of the undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/Vis spectroscopy. The analyzed results indicates that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn related phases. Room temperature photoluminescence is observed for the ZnO and Mn-doped ZnO thin films.  相似文献   

5.
Undoped and Nd-doped PbSe nanoparticles with different Nd contents were successfully synthesized using a simple hydrothermal method. The prepared nanoparticles were thoroughly characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques. Catalytic efficiency of undoped and Nd-doped PbSe samples was evaluated by monitoring the removal of sulfasalazine (SSZ) in aqueous solution under ultrasonic irradiations (sonocatalytic removal process). It was found that the presence of the K2S2O8 accelerated the sonocatalytic removal of SSZ, but the presence of NaF, Na2SO4, NaCl, and NaHCO3 obstructed it. The removal efficiency of 30.24% for PbSe and 86% for 12% Nd-doped PbSe was achieved at 90 min of reaction time, in the presence of peroxydisulfate. Also, the effect of operational parameters on the sonocatalytic removal efficiency and the dominant sonocatalytic removal mechanism were completely examined. It was found that removal of SSZ by sonocatalytic process was completed by the action of reactive oxygen species (ROS) rather than pyrolysis. An ecotoxicological test using an aquatic plant Lemna minor (L. minor) confirmed the negligible toxicity of the synthesized samples, which makes these nanoparticles appropriate for use as a sonocatalyst.  相似文献   

6.
In this research, Fe-doped TiO2 nanoparticles with various Fe concentrations (0. 0.1, 1, 5 and 10 wt%) were prepared by a sol–gel method. Then, nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray analysis (EDX), BET surface area, photoluminescence (PL) spectroscopy and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity of the nano-particles was evaluated through degradation of reactive red 198 (RR 198) under UV and visible light irradiations. XRD results revealed that all samples contained only anatase phase. DRS showed that the Fe doping in the titania induced a significant red shift of the absorption edge and then the band gap energy decreased from 3 to 2.1 eV. Photocatalytic results indicated that TiO2 had a highest photocatalytic decolorization of the RR 198 under UV irradiation whereas photocatalytic decolorization of the RR 198 under visible irradiation increased in the presence of Fe-doped TiO2 nanoparticles. Among the samples, Fe-1 wt% doped TiO2 nanoparticles showed the highest photocatalytic decolorization of RR198 under visible light irradiation.  相似文献   

7.
Hierarchical structured Co-doped SnO2 nanoparticles are prepared by a low temperature hydrothermal process. The structural and surface morphologies of the SnO2 and Sn1?xCoxO2 nanoparticles are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The Sn1?xCoxO2 nanoparticles form with a tetragonal rutile structure during the hydrothermal process without further calcination. The pseudocapacitance behavior of the Sn1?xCoxO2 nanoparticles is characterized by cyclic voltammetry (CV) in 1.0 M H2SO4 electrolyte. The specific capacitance (SC) is found to increase with an increase in cobalt content. A maximum SC of 840 F g?1 is obtained for a Sn0.96Co0.04O2 composite at a 10 mV s?1 scan rate.  相似文献   

8.
Cube micrometer potassium niobate (KNbO3) powder, as a high effective sonocatalyst, was prepared using hydrothermal method, and then, was characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of prepared KNbO3 powder, the sonocatalytic degradation of some organic dyes was studied. In addition, some influencing factors such as heat-treatment temperature and heat-treatment time on the sonocatalytic activity of prepared KNbO3 powder and catalyst added amount and ultrasonic irradiation time on the sonocatalytic degradation efficiency were examined by using UV–visible spectrophotometer and Total Organic Carbon (TOC) determination. The experimental results showed that the best sonocatalytic degradation ratio (69.23%) of organic dyes could be obtained when the conditions of 5.00 mg/L initial concentration, 1.00 g/L prepared KNbO3 powder (heat-treated at 400 °C for 60 min) added amount, 5.00 h ultrasonic irradiation (40 kHz frequency and 300 W output power), 100 mL total volume and 25–28 °C temperature were adopted. Therefore, the micrometer KNbO3 powder could be considered as an effective sonocatalyst for treating non- or low-transparent organic wastewaters.  相似文献   

9.
The present study focused on the synthesis of nanostructured MgO via sonochemical method and its application as sonocatalyst for the decolorization of Basic Red 46 (BR46) dye under ultrasonic irradiation. The sonocatalyst was characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) equipped with energy dispersive X-ray microanalysis (EDX). In the following, the sonocatalytic removal of the dye under different operational conditions was evaluated kinetically on the basis of pseudo first-order kinetic model. The reaction rate of sonocatalyzed decolorization using MgO nanostructures (12.7 × 10−3 min−1) was more efficient than that of ultrasound alone (2.0 × 10−3 min−1). The increased sonocatalyst dosage showed better sonocatalytic activity but the application of excessive dosage should be avoided. The presence of periodate ions substantially increased the decolorization rate from 14.76 × 10−3 to 33.4 × 10−3 min−1. Although the application of aeration favored the decolorization rate (17.8 × 10−3 min−1), the addition of hydrogen peroxide resulted in a considerable decrease in the decolorization rate (9.5 × 10−3 min−1) due to its scavenging effects at specific concentrations. Unlike alcoholic compounds, the addition of phenol had an insignificant scavenging effect on the sonocatalysis. A mineralization rate of 7.4 × 10−3 min−1 was obtained within 120 min. The intermediate byproducts were also detected using GC–MS analysis.  相似文献   

10.
Trimetallic perovskite oxides, Sm(1 ? x)CexFeO3 ± λ (x = 0–0.05), were prepared by thermal decomposition of amorphous citrate precursors followed by calcinations. The material properties of the substituted perovskites were characterized by X-ray diffraction (XRD), X-ray florescence spectroscopy (XRF), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The doped materials exhibited a single perovskite phase in air up to 1350 °C and have specific surface areas in the range of 2.696–8.665 m2/g. In reducing atmosphere (5%v/vH2/N2), the unsubstituted perovskite (x = 0) decomposed into two phases while the ceria stabilized materials (x = 0.01, x = 0.03, x = 0.05) remained in a single phase as revealed by XRD analysis. Their conductivities were measured by the four point probe method in air and in dilute hydrogen (5%v/vH2/N2) separately. The ceria substituted materials show increased stability versus reduction and phase separation for a wide temperature range (up to 1000 °C). Although undoped SmFeO3 has higher conductivity under oxidizing conditions than ceria doped SmFeO3 due its p-type nature, the situation is reversed under reducing conditions. The ceria substituted perovskites (Sm(1 ? x)CexFeO3 ± λ, x = 0–0.05) showed higher conductivity in reducing than in oxidizing conditions, suggesting that ceria doping at the A-site has changed the SmFeO3 from p-type to n-type semi-conducting behavior.  相似文献   

11.
Zn1−xCdxO nanocrystalline powder with different Cd contents (0≤x≤1) has been prepared by new facile sol–gel route. The crystal structure and optical properties were investigated by X-ray diffraction patterns, Transmission electron microscope, X-ray photoelectron spectroscopy, Photoluminescence. As x varied from x=0 to 0.25, the Zn1−xCdxO nanopowder exhibits a hexagonal wurtzite structure of pure ZnO without any significant formation of a separated CdO phase. For the samples with 0.5≤x≤0.85, the Zn1−xCdxO nanopowder exhibits the coexistence of hexagonal ZnO and cubic CdO phase, meanwhile, the content of ZnO phase decreases while that of CdO increases with increasing the Cd content x. The ultra-violet near-band-edge emission of the Zn1−xCdxO nanopowder was monotonously red-shifted from 389 nm (x=0) to 406 nm (x=0.25) due to the direct modulation of band gap caused by Cd substitution.  相似文献   

12.
Cadmium selenide/graphene quantum dots (CdSe/GQDs) nanocatalyst with small band gap energy and a large specific surface area was produced via a facile three-step sonochemical-hydrothermal process. The features of the as-prepared CdSe, GQDs and CdSe/GQDs samples were characterized by photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), diffuse-reflectance spectrophotometer (DRS), and Brunauer–Emmett–Teller (BET) analysis. The sonocatalytic activity of the synthesized CdSe/GQDs was effectively accelerated compared with that of pure CdSe nanoparticles in degradation of methylene blue (MB). The influence of the CdSe/GQDs dosage (0.25–1.25 g/L), initial MB concentration (20–30 mg/L), initial solution pH (3–12), and ultrasonic output power (200–600 W/L) were examined on the sonocatalytic treatment of MB aqueous solutions. The degradation efficiency (DE%) of 99% attained at 1 g/L of CdSe/GQDs, 20 mg/L of MB, pH of 9, and an output power of 200 W/L at 90 min of ultrasonic irradiation. Furthermore, DE% increased with addition of K2S2O8 and H2O2 as the enhancers via producing more free radicals. However, addition of sulfate, carbonate, and chloride as radical sweeper decreased DE%. Furthermore, well-reusability of the CdSe/GQDs sonocatalyst was demonstrated for 5 successive runs and some of the sonocatalytic generated intermediates were indicated by GC–MS analysis.  相似文献   

13.
Composition Bi4V2−xSrxO11−δ (0.05≤x≤0.20) is synthesized by melt quench technique followed by heat treatment at 800 °C for 12 h. These compounds are characterised by X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV–visible spectroscopy, impedance spectroscopy and scanning electron microscopy. X-ray diffraction patterns of all the samples show γ-phase stabilization at room temperature except x=0.05 heat treated sample. The optical band gap of all the samples is observed in semiconducting range. The lowest and the highest optical band gap is 2.39 eV and 2.57 eV for x=0.10 heat treated and x=0.20 quenched samples, respectively. The highest value of dielectric constant is obtained ~107 with very low dielectric loss for x=0.15 and 0.20 samples at ~350 °C and below 10 Hz. The grain size increases with dopant concentration leads to increase the dielectric constant.  相似文献   

14.
Ce, Cu co-doped ZnO (Zn1−2xCexCuxO: x=0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) nanocrystals were synthesized by a microwave combustion method. These nanocrystals were investigated by using X-ray diffraction (XRD), UV–visible diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The stability and magnetic properties of Ce and Cu co-doped ZnO were probed by first principle calculations. XRD results revealed that all the compositions are single crystalline. hexagonal wurtzite structure. The optical band gap of pure ZnO was found to be 3.22 eV, and it decreased from 3.15 to 3.10 eV with an increase in the concentration of Cu and Ce content. The morphologies of Ce and Cu co-doped ZnO samples confirmed the formation of nanocrystals with an average grain size ranging from 70 to 150 nm. The magnetization measurement results affirmed the antiferro and ferromagnetic state for Ce and Cu co-doped ZnO samples and this is in agreement with the first principles theoretical calculations.  相似文献   

15.
《Solid State Ionics》2006,177(1-2):29-35
Microstructure and local structure of spinel LiNixMn2  xO4 (x = 0, 0.1 and 0.2) were studied using X-ray diffraction (XRD) and a combination of X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge spectroscopy (XANES) and Raman scattering with the aim of getting a clear picture of the local structure of the materials responsible for the structural stability of LiNixMn2  xO4. XRD study showed that Ni substitution caused the changes of the materials’ microstructure from the view of the lattice parameter, mean crystallite size, and microstrain. XPS and XANES studies showed the Ni oxidation state in LiNixMn2  xO4 was larger than + 2, and the Mn oxidation state increased with Ni substitution. The decrease of the intensity of the 1s → 4pz shakedown transition on the XANES spectra indicated that Ni substitution suppressed the tetragonal distortion of the [MnO6] octahedron. The Mn(Ni)–O bond in LiNixMn2  xO4, which is stronger than the Mn–O bond in LiMn2O4 was responsible for the blue shift of the A1g Raman mode and could enhance the structural stability of the [Mn(Ni)O6] octahedron.  相似文献   

16.
In this paper we review the preparation and reaction properties of ordered SmRh surface alloys and SmOx/Rh(1 0 0) model catalyst which have been systematically investigated by low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS) and temperature desorption spectroscopy (TDS). The growth of Sm on Rh(1 0 0) at room temperature follows the Stranski-Krastanov mode. Thermal treatment of the Sm films on Rh(1 0 0) leads to the formation of ordered SmRh surface alloys. An “inverse” SmOx/Rh(1 0 0) model catalyst is produced under controlled oxidation of the SmRh surface alloy. CO adsorption on the SmRh alloy and SmOx/Rh(1 0 0) surfaces gives rise to five TDS characteristic features originating from different adsorption sites. Both the site blocking of SmOx and the electron transfer between SmOx and Rh substrate significantly affect the CO adsorption. Acetate decomposition on both Rh(1 0 0) and the SmOx/Rh(1 0 0) surfaces are found to undergo two competitive pathways that yields either (i) CO(a) and O(a) or (ii) CO2(g) and H2(g) at high temperature. The reactive desorption of acetic acid on SmOx/Rh(1 0 0) is dramatically different from that on Rh(1 0 0). A rapid decomposition of acetic acid to produce CO(g) and CO2(g) can be observed only on SmOx/Rh(1 0 0), where CO(g) becomes the predominant product at 225 K, indicating a strong promotional effect of SmOx in the selective decomposition of acetate. Finally, we briefly describe the future outlook of research on rare earth oxide/metal model catalysts.  相似文献   

17.
《Current Applied Physics》2010,10(3):734-739
CdxZn1−xSe films (0  x  1) were deposited for the first time by the pulse plating technique at different duty cycles in the range 6–50% at room temperature from an aqueous bath containing zinc sulphate, cadmium sulphate and selenium oxide. To the author’s knowledge this is the first report on pulse plated CdxZn1−xSe films. The deposition potential was −0.9 V (SCE). The as deposited films exhibited cubic structure. Composition of the films was estimated by Energy Dispersive Analysis of X-ray studies. X-ray photoelectron spectroscopy studies indicated the binding energies corresponding to Zn(2p3/2), Cd(3d5/2 and 3d3/2) and Se(3d5/2 and 3d3/2). Optical band gap of the films varied from 1.72 to 2.70 eV as the composition varied from CdSe to ZnSe side. Atomic force microscopy studies indicated grain size in the range of 20–150 nm.  相似文献   

18.
Equal amount Pr and Ca double-doping Y1?2xPrxCaxBa2Cu3O7?δ with 0 ? x ? 0.14 have been investigated by X-ray diffraction, resistivity, and X-ray photoemission spectroscopy (XPS). The deviation of the linearly decreasing of Tc vs. x curve was observed when x < 0.10. The resistivity and the temperature coefficient of resistivity also exhibit abnormal behaviors around x = 0.10. It is revealed that the conductivity behavior of Y1?2xPrxCaxBa2Cu3O7?δ with low Pr content (x < 0.10) is different from that of the relative high Pr content (x > 0.10), which suggests a change of Pr valence with the Pr content. XPS measurement shows that the relative amount of Pr3+ and Pr4+ is closely related to the total Pr content x. The valence of Pr is close to +3 when x < 0.10 and increases towards +4 when x > 0.10, which implies a different mechanism for depression of superconductivity of Pr content x < 0.10 from that of Pr content x > 0.10 in Pr doping Y-123.  相似文献   

19.
《Current Applied Physics》2010,10(2):676-681
Thioglycerol capped nanoparticles of ZnO have been prepared in methanol through chemical technique. Nanostructures of the prepared ZnO particles have been confirmed through X-ray diffraction measurement. The Debye–Scherrer formula is used to obtain the particle size. The average size of the prepared ZnO nanoparticles is found to be 50 nm. The frequency-dependent dielectric dispersion of the sample is investigated in the temperature range from 293 to 383 K and in a frequency range from 100 Hz to 1 MHz by impedance spectroscopy. An analysis of the complex permittivity (ε′ and ε′′) and loss tangent (tan δ) with frequency is performed assuming a distribution of relaxation times. The frequency-dependent maxima of the imaginary part of impedance are found to obey Arrhenius law with activation energy ∼1 eV. The scaling behavior of dielectric loss spectra suggests that the relaxation describes the same mechanism at various temperatures. The frequency-dependent electrical data are analyzed in the framework of conductivity and modulus formalisms. The frequency-dependent conductivity spectra obey the power law.  相似文献   

20.
In this study, (ZnO)x(CdO)1?x films were prepared by ultrasonic spray pyrolysis (USP) technique at a substrate temperature of 400 °C. X-ray diffraction patterns of the films indicate that the (ZnO)x(CdO)1?x films have hexagonal wurtzite and cubic structure for the constituent materials. A decrease in the average transmission with increasing quantity of the cadmium acetate dehydrate in the sprayed solution was observed. The photoconductivity transients were performed using UV light, which has 360 nm wavelength. After light cut off, conductivity changed slowly, and the decay time was thousands of seconds. The films with x=0.2 and 0 exhibited negative photoconductivity. Temperature-dependent photoconductivity and dark conductivity measurements were performed and negative photoconductivity was also observed for the same films (x=0.2 and 0). Photoluminescence measurements were performed and band-to-band excitation energies of (ZnO)x(CdO)1?x films were determined. Band gap of the pure CdO film was found as 3.11 eV, interestingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号