首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-assembled InAs/GaAs (001) quantum dots (QDs) were grown by molecular beam epitaxy using ultra low-growth rate. A typical dot diameter of around 28 ± 2 nm and a typical height of 5 ± 1 nm are observed based on atomic force microscopy image. The photoluminescence (PL) spectra, their power and temperature dependences have been studied for ground (GS) and three excited states (1–3ES) in InAs QDs. By changing the excitation power density, we can significantly influence the distribution of excitons within the QD ensemble. The PL peak energy positions of GS and ES emissions bands depend on an excitation light power. With increasing excitation power, the GS emission energy was red-shifted, while the 1–3ES emission energies were blue-shifted. It is found that the full width at half maximum of the PL spectra has unusual relationship with increasing temperature from 9 to 300 K. The temperature dependence of QD PL spectra shown the existence of two stages of PL thermal quenching and two distinct activation energies corresponding to the temperature ranges I (9–100 K) and II (100–300 K).  相似文献   

2.
李文生  孙宝权 《发光学报》2009,30(5):668-672
利用分子束外延制备了三种类型量子点样品,它们分别是:未掺杂样品、n型Si调制掺杂样品和p型Be调制掺杂样品。在5 K温度下,采用共聚焦显微镜系统,测量了单量子点的光致发光谱和时间分辨光谱, 研究了单量子点中三种类型激子(本征激子、负电荷激子和正电荷激子)的电子/空穴自旋翻转时间。它们的自旋翻转时间常数分别为: 本征激子的自旋翻转时间约16 ns, 正电荷激子中电子的自旋翻转时间约2 ns, 负电荷激子中空穴的自旋翻转时间约50 ps。  相似文献   

3.
In this work, the electric field-induced Franz-Keldysh effect was used to investigate the localized electric fields in GaAs interfaces attributed to strain effect of InAs/GaAs quantum dots (QD). The electric fields were investigated by photoreflectance spectroscopy (PR). PR spectra of the InAs/GaAs QDs showed complex Franz-Keldysh oscillations (FKOs) with various temperatures. It is suggested that the FKOs originated from the interface electric fields predominately caused by the strain-induced polarization at GaAs interface near the InAs QDs. The InAs/GaAs QDs have a broad range of interface electric fields from ~104 V/cm to ~2х105 V/cm. Temperature behavior of FKO amplitude distribution is explained by temperature dependent carrier confinement effect.  相似文献   

4.
We report systematic temperature-dependent measurements of photoluminescence spectra in self-assembled InGaAs/InAs/GaAs quantum dots (QDs). We have studied the rise in temperature of the ground-state homogeneous linewidth.A theoretical model is presented and accounts for the phonon-assisted broadening of this transition in individual QD. We have estimated the homogeneous linewidth of an individual QD from PL spectra of self-organized InAs/GaAs QDs by isolating the PL of each individual QD and fitting the narrow line associated with self-organized QDs through a Lorentzian convoluted by a Gaussian. We have observed a strong exciton–LO–phonon coupling (γLO) which becomes the dominating contribution to the linewidth above the temperature of 45 K. We have also derived the activation energy (ΔE) of the exciton–LO–phonon coupling, zero temperature linewidth (Γ0) and the exciton-LA-phonon coupling parameter (γAc). We report that our values are close to the values found in the literature for single InGaAs QD and InAs QD.  相似文献   

5.
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.  相似文献   

6.
In this letter, we present results of photoluminescence (PL) emission from single-layer and multilayer InAs self-organized quantum dots (QDs), which were grown on (001) InP substrate. The room temperature PL peak of the single-layer QDs locates at 1608 nm, and full width at half-maximum (FWHM) of the PL peak is 71 meV. The PL peak of the multilayer QDs locates at 1478 nm, PL intensity of which is stronger than that of single-layer QDs. The single-layer QD PL spectra also display excited state emission and state filling as the excitation intensity is increased. Low temperature PL spectra show a weak peak between the peaks of QDs and wetting layer (WL), which suggests the recombination between electrons in the WL and holes in the dots.  相似文献   

7.
Reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and double-crystal X-ray curves showed that high-quality InAs quantum dot (QD) arrays inserted into GaAs barriers were embedded in an Al0.3Ga0.7As/GaAs heterostructure. The temperature-dependent photoluminescence (PL) spectra of the InAs/GaAs QDs showed that the exciton peak corresponding interband transition from the ground electronic subband to the ground heavy-hole subband (E1-HH1) was dominantly observed and that the peak position and the full width at half maximum corresponding to the interband transitions of the PL spectrum were dependent on the temperature. The activation energy of the electrons confined in the InAs/GaAs QDs was 115 meV. The electronic subband energy and the energy wave function of the Al0.3Ga0.7As/GaAs heterostructures were calculated by using a self-consistent method. The electronic subband energies in the InAs/GaAs QDs were calculated by using a three-dimensional spatial plane wave method, and the value of the calculated (E1-HH1) transition in the InAs/GaAs QDs was in reasonable agreement with that obtained from the PL measurement.  相似文献   

8.
The intermixing of Sb and As atoms induced by rapid thermal annealing (RTA) was investigated for type II GaSb/GaAs self-assembled quantum dots (QD) formed by molecular beam epitaxy growth. Just as in InAs/GaAs QD systems, the intermixing induces a remarkable blueshift of the photoluminescence (PL) peak of QDs and reduces the inhomogeneous broadening of PL peaks for both QD ensemble and wetting layer (WL) as consequences of the weakening of quantum confinement. Contrary to InAs/GaAs QDs systems, however, the intermixing has led to a pronounced exponential increase in PL intensity for GaSb QDs with annealing temperature up to 875 °C. By analyzing the temperature dependence of PL for QDs annealed at 700, 750 and 800 °C, activation energies of PL quenching from QDs at high temperatures are 176.4, 146 and 73.9 meV. The decrease of QD activation energy with annealing temperatures indicates the reduction of hole localization energy in type II QDs due to the Sb/As intermixing. The activation energy for the WL PL was found to drastically decrease when annealed at 800 °C where the QD PL intensity surpassed WL.  相似文献   

9.
张志伟  赵翠兰  孙宝权 《物理学报》2018,67(23):237802-237802
采用双层耦合量子点的分子束外延生长技术生长了InAs/GaAs量子点样品,把量子点的发光波长成功地拓展到1.3 μm.采用光刻的工艺制备了直径为3 μm的柱状微腔,提高了量子点荧光的提取效率.在低温5 K下,测量得到量子点激子的荧光寿命约为1 ns;单量子点荧光二阶关联函数为0.015,显示单量子点荧光具有非常好的单光子特性;利用迈克耳孙干涉装置测量得到单光子的相干时间为22 ps,对应的谱线半高全宽度为30 μeV,且荧光谱线的线型为非均匀展宽的高斯线型.  相似文献   

10.
Self-assembled InAs quantum dots (QDs) on In0.52Al0.48As layer lattice matched to (1 0 0) InP substrates have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). TEM observations indicate that defect-free InAs QDs can be grown to obtain emissions over the technologically important 1.3–1.55 μm region. The PL peak positions for the QDs shift to low energy as the InAs coverage increases, corresponding to increase in QD size. The room temperature PL peak at 1.58 μm was observed from defect-free InAs QDs with average dot height of 3.6 nm.  相似文献   

11.
The electrical and the optical properties of InAs/GaAs quantum dots (QDs) grown by using atomic layer epitaxy (ALE) technique were investigated by using capacitance-voltage (C-V) and photoluminescence (PL) measurements. C-V curves showed that the plateaus related to the zero-dimensional carrier confinement effect existed and that the number of electrons occupying the InAs QD was approximately 7. The full width at half maxima of the interband transitions from the ground electronic subband to the ground heavy-hole subband and from the first excited electronic state to the first excited state heavy-hole subband were not significantly affected by the temperature variation, indicative of strong confinement of the carriers occupying the InAs QDs. These results can help improve understanding for applications of InAs/GaAs QDs grown by using ALE in high-efficiency electronic and optoelectronic devices.  相似文献   

12.
Mn-including InAs quantum dots (QDs) were fabricated by Mn-ion implantation and subsequent annealing. The optical, compositional, and structural properties of the treated samples were analyzed by photoluminescence (PL) and microscopy. Energy dispersive X-ray (EDX) results indicate that Mn ions diffused from the bulk GaAs into the InAs QDs during annealing, and the diffusion appears to be driven by the strain in the InAs QDs. The temperature dependence of the PL of Mn-including InAs QD samples exhibits QDs PL characteristics. At the same time, the heavy Mn-including InAs QD samples have ferromagnetic properties and high Tc.  相似文献   

13.
The Optical characteristics of InAs quantum dots (QDs) embeded in InAlGaAs on InP have been investigated by photoluminescence (PL) spectroscopy and time-resolved PL. Four different QD samples are grown by using molecular beam epitaxy, and all the QD samples have five-stacked InAs quantum dot layers with a different InAlGaAs barrier thickness. The PL yield from InAs QDs was increased with an increase in the thickness of the InAlGaAs barrier, and the emission peak positions of all InAs QD samples were measured around 1.5 μm at room temperature. The decay time of the carrier in InAs QDs is decreased abruptly in the QD sample with the 5 nm InAlGaAs barrier. This feature is explained by the tunneling and coupling effect in the vertical direction and probably defect generation.  相似文献   

14.
Photoluminescence (PL) measurements have been carried out to investigate the annealing effects in one-period and three-periods of InAs/GaAs self-assembled quantum dots (QDs) grown on GaAs substrates by using molecular beam epitaxy. After annealing, the PL spectra for the annealed InAs/GaAs QDs showed dramatic blue shifts and significant linewidth narrowing of the PL peaks compared with the as-grown samples. The variations in the PL peak position and the full width at half-maximum of the PL peak are attributed to changes in the composition of the InAs QDs resulting from the interdiffusion between the InAs QDs and the GaAs barrier and to the size homogeneity of the QDs. These results indicate that the optical properties and the crystal qualities of InAs/GaAs QDs are dramatically changed by thermal treatment.  相似文献   

15.
Zhang  Y.  Wang  X.Q.  Chen  W.Y.  Bai  X.D.  Liu  C.X.  Yang  S.R.  Liu  S.Y. 《Optical and Quantum Electronics》2001,33(11):1131-1137
In this paper, room temperature PL spectra of InAs self-assembled dots grown on GaAs/InP and InP substrate are presented. For analyzing different positions of the PL peaks, we examine the strain tensor in these quantum dots (QDs) using a valence force field model, and use a five-band k·p formalism to find the electronic spectra. We find that the GaAs tensile-stained layer affects the position of room temperature PL peak. The redshift of PL peak of InAs/GaAs/InP QDs compared to that of InAs/InP QDs is explained theoretically.  相似文献   

16.
We have demonstrated the selective area growth of stacked self-assembled InAs quantum dot (QD) arrays in the desired regions on a substrate and confirmed the photoluminescence (PL) emission exhibited by them at room temperature. These InAs QDs are fabricated by the use of a specially designed atomic force microscope cantilever referred to as the Nano-Jet Probe (NJP). By using the NJP, two-dimensional arrays with ordered In nano-dots are fabricated in the desired square regions on a GaAs substrate and directly converted into InAs QD arrays through the subsequent annealing by the irradiation of As flux. By using the converted QD arrays as strain templates, self-organized InAs QDs are stacked. These stacked QDs exhibit the PL emission peak at a wavelength of 1.02 μm.  相似文献   

17.
梁松  朱洪亮  潘教青  王圩 《中国物理》2006,15(5):1114-1119
Self-assembled InAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatomic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL) . It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.  相似文献   

18.
The growth of InAs quantum dots (QDs) on InP (1 0 0) and (3 1 1)A substrates by chemical-beam epitaxy is studied. The InAs QDs are embedded in a GaInAsP layer lattice-matched to InP. We demonstrate an effective way to continuously tune the emission wavelength of InAs QDs grown on InP (1 0 0). With an ultra-thin GaAs layer inserted between the QD layer and the GaInAsP buffer, the peak wavelength from the InAs QDs can be continuously tuned from above 1.6 μm down to 1.5 μm at room temperature. The major role of the thin GaAs layer is to greatly suppress the As/P exchange during the deposition of InAs and subsequent growth interruption under arsenic flux, as well as to consume the segregated In layer floating on the GaInAsP buffer. Moreover, it is found that InP (3 1 1)A substrates are particularly promising for formation of uniform InAs QDs. The growth of InAs on InP (3 1 1)A consists of two stages: nanowire formation due to strain-driven growth instability and subsequent QD formation on top of the wires. The excellent size uniformity of the InAs QDs obtained on InP (3 1 1)A manifests itself in the narrow photoluminescence line width of 26 meV at 4.8 K.  相似文献   

19.
苏丹  窦秀明  丁琨  王海艳  倪海桥  牛智川  孙宝权 《物理学报》2015,64(23):235201-235201
采用光学方法确定InAs/GaAs单量子点在样品外延面上的位置坐标, 利用AlAs牺牲层把含有量子点的GaAs层剥离并放置在含有金纳米颗粒或平整金膜上, 研究量子点周围环境不同对量子点自发辐射寿命及发光提取效率的影响. 实验结果显示, 剥离前后量子点发光寿命的变化小于13%, 含有金纳米颗粒的量子点发光强度是剥离前的7倍, 含有金属薄膜的量子点发光强度是剥离前的2倍. 分析表明在金纳米颗粒膜上的量子点荧光强度的增加主要来自于金纳米颗粒对量子点荧光的散射效应, 从而提高量子点发光的提取效率.  相似文献   

20.
The growth parameters affecting the deposition of self-assembled InAs quantum dots (QDs) on GaAs substrate by low-pressure metal-organic chemical vapor deposition (MOCVD) are reported. The low-density InAs QDs (- 5 × 10^8cm^-2) are achieved using high growth temperature and low InAs coverage. Photoluminescence (PL) measurements show the good optical quality of low-density QDs. At room temperature, the ground state peak wavelength of PL spectrum and full-width at half-maximum (FWHM) are 1361 nm and 23 meV (35 nm), respectively, which are obtained as the GaAs capping layer grown using triethylgallium (TEG) and tertiallybutylarsine (TBA). The PL spectra exhibit three emission peaks at 1361, 1280, and 1204 nm, which correspond to the ground state, the first excited state, and the second excited state of the ODs, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号