首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional and spatially resolved proton NMR and relaxation measurements are used in order to study the molecular motions and the equilibrium and nonequilibrium diffusion of oils in Berea sandstone and Venezuelan reservoir rocks. In the water-saturated Berea a single line with T*2 congruent to 150 microseconds is observed, while the relaxation recovery is multiexponential. In an oil reservoir rock (Ful 13) a single narrow line is present while a distribution of relaxation rates is evidenced from the recovery plots. On the contrary, in the Ful 7 sample (extracted at a deeper depth in a different zone) two NMR components are present, with 3.5 and 30 KHz linewidths, and the recovery plot exhibits biexponential law. No echo signal could be reconstructed in the oil reservoir rocks. These findings can be related to the effects in the micropores, where motions at very low frequency can occur in a thin layer. From a comparison of the diffusion constant in water-saturated Berea, D congruent to 5*10(-6) cm2/sec, with the ones in model systems, the average size of the pores is estimated around 40 A. The density profiles at the equilibrium show uniform distribution of oils or of water, and the relaxation rates appear independent from the selected slice. The nonequilibrium diffusion was studied as a function of time in a Berea cylinder with z axis along H0, starting from a thin layer of oil at the base, and detecting the spin density profiles d(z,t) with slice-selection techniques. Simultaneously, the values of T1's were measured locally, and the distribution of the relaxation rates was observed to be present in any slice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We propose a new method to determine wettability indices from NMR relaxometry. The new method uses the sensitivity of low field NMR relaxometry to the fluid distribution in oil-water saturated porous media. The model is based on the existence of a surface relaxivity for both oil and water, allowing the determination of the amount of surface wetted either by oil or by water. The proposed NMR wettability index requires the measurement of relaxation time distribution at four different saturation states. At the irreducible water saturation, we determine the dominant relaxation time of oil in the presence of a small amount of water, and at the oil residual saturation, we determine the dominant relaxation time of water in the presence of a small amount of oil. At 100% water and 100% oil saturation, we determine the surface relaxivity ratio. The interaction of oil with the surface is also evidenced by the comparison of the spin-lattice (T1) and spin-locking (T1rho) relaxation times. The new NMR index agrees with standard wettability measurements based on drainage-imbibition capillary pressure curves (USBM test) in the range [-0.3-1].  相似文献   

3.
Transverse (T2) NMR relaxation time at 2 MHz proton resonance frequency was measured on core plug samples from two different lithologies, sandstone and chalk, before and after exposure to selected drilling fluids. The results show that NMR signal response was significantly altered after displacing 50% of the original pore fluids, crude oil and water, by drilling fluid filtrate. Relaxation spectra of the rock samples invaded by water-based filtrate shift to significantly shorter T2-values. This shift yields an underestimation of the free-fluid volumes when selecting cut-off values of 33 ms and 100 ms for sandstone and chalk, respectively. In opposite, rock samples affected by oil-based filtrate respond with a signal indicating significantly larger free-fluid volumes than present before exposure. NMR-permeability calculated based on the Timur-Coates Free Fluid model altered in some cases by one order of magnitude.  相似文献   

4.
Proton multipolar spin states associated with dipolar encoded longitudinal magnetization (DELM) and double-quantum (DQ) coherences of bound water are investigated for bovine and sheep Achilles tendon under mechanical load. DELM decay curves and DQ buildup and decay curves reveal changes of the 1H residual dipolar couplings for tendon at rest and under local compression forces. The multipolar spin states are used to design dipolar contrast filters for NMR 1H images of heterogeneous tendon. Heterogeneities in tendon samples were artificially generated by local compression parallel and perpendicular to the tendon plug axis. Quotient images obtained from DQ-filtered images by matched and mismatched excitation/reconversion periods are encoded only by the residual dipolar couplings. Semi-quantitative parameter maps of the residual dipolar couplings of bound water were obtained from these quotient images using a reference elastomer sample. This method can be used to quantify NMR imaging of injured ordered tissues.  相似文献   

5.
By combining NMR relaxation spectroscopy and magnetic resonance imaging techniques, unsalted (us) and salted (s) caviar (Acipenser transmontanus) oocytes were characterized over a storage period of up to 90 days. The aging and the salting effects on the two major cell constituents, water and lipids, were separately assessed. T1 and T2 decays were interpreted by assuming a two-site exchange model. At Day 0, two water compartments that were not in fast exchange were identified by the T1 relaxation measurements on the us oocytes. In the s samples, T1 decay was monoexponential. During the time of storage, an increment of the free water amount was found for the us oocytes, ascribed to an increased metabolism. T1 and T2 of the s oocytes shortened as a consequence of the osmotic stress produced by salting. Selective images showed the presence of water endowed with different regional mobility that severely changed during the storage. Lipid T1 relaxation decays collected on us and s samples were found to be biexponential, and the T1 values lengthened during storage. In us and s oocytes, the increased lipid mobility with the storage was ascribed to lipolysis. Selective images of us samples showed lipids that were confined to the cytoplasm for up to 60 days of storage.  相似文献   

6.
Magnetic resonance imaging (MRI) has been shown to be a very effective tool for monitoring the formation and dissociation of hydrates because of the large intensity contrast between the images of the liquid components and the solid hydrate. Tetrahydrofuran/water hydrate was used because the two liquid components are miscible and form hydrate at ambient pressure. These properties made this feasibility study proceed much faster than using methane/water, which requires high pressure to form the hydrate. The formation and dissociation was monitored first in a THF/water-saturated Berea sandstone plug and second in the bulk. In both cases it appeared that nucleation was needed to begin the formation process, i.e., the presence of surfaces in the sandstone and shaking of the bulk solution. Dissociation appeared to be dominated by the rate of thermal energy transfer. The dissociation temperature of hydrate formed in the sandstone plug was not significantly different from the dissociation temperature in bulk.  相似文献   

7.
储油岩芯二相液体吸附特性的NMR研究及应用   总被引:2,自引:1,他引:1  
为研究储油岩芯对液体的吸附机理,我们特地用同一岩芯制成以下几种样品:(1)吸附不同量的煤油;(2)吸附不同量的水;(3)先吸附一定量的水再吸附一定量的煤油.对以上三组样品,做了NMR自旋—晶格弛豫时间测定;考查了岩芯样品中各弛豫成分量与液体吸附量的变化规律;得出了岩芯内水和煤油受束缚越紧其弛豫时间越短的结论.并依据大量石油地质学的结论建立了砂岩孔隙中油水二相系统的核磁共振模型.  相似文献   

8.
Nuclear magnetic resonance imaging (NMRI) techniques were employed to identify and selectively image biological films (biofilm) growing in aqueous systems. Biofilms are shown to affect both the longitudinal (T1) and transverse (T2) NMR relaxation time values of proximal water hydrogens. Results are shown for biofilm growth experiments performed in a transparent parallel-plate reactor. A comparison of biofilm distributions by both NMR and optical imaging yielded general agreement for both an open-flow system and an idealized porous system (the reactor without and with packed glass beads, respectively). The selective imaging of biofilm by relaxation NMRI is dependent upon the resolution of relaxation times for the fluid phases, dynamic range, and signal-to-noise ratio. For open-flow systems, the use of a rapid and quantitative T2-sorted NMRI technique was preferred. For porous systems where T2 values are generally more similar, a T1-weighted technique was preferred.  相似文献   

9.
The effects that the spatial distribution of water protons and their transverse relaxation times have on the image contrast of spin echo images of courgette was investigated. The T2-weighted image of courgette contains the most anatomical information. The image contrast was explained using a phenomenological theory based on the Bloch equations, which gave an insight into the morphology and microdynamics of water in the plant tissue. The perceived contrast in the spin echo images of courgette, glucose and Sephadex bead solutions can be dramatically altered by keeping all the imaging acquisition parameters constant, such as the recycle and echo time, but reducing the interpulse spacing by introducing a CPMG train of 180 degrees pulses into the middle of the sequence. These changes were interpreted by considering the microenvironment of the water. This work demonstrates that the origin of image contrast in T2-weighted images of plant tissue can be understood using the water proton transverse relaxation theory developed by Hills et al.  相似文献   

10.
岩心水驱油过程中油水分布状况是岩心多孔介质的重要性质. 水驱油过程的研究是进一步进行提高采收率研究的基础. 核磁共振扩散-弛豫二维谱提供了岩心中流体性质的多方面信息,与核磁共振一维弛豫谱相比极大地提高了区分油水的能力. 该文通过2组岩心水驱油实验,从不同含油饱和度的扩散-弛豫二维谱中提取出水的一维弛豫谱,在原油粘度比较高的情况下获得了驱替过程中油水在不同孔隙中的分布状况以及润湿性等信息, 解决了单独用一维弛豫谱方法难以区分油水的问题. 该文的研究方法对油田提高采收率的研究有比较大的参考价值.  相似文献   

11.
2D correlations between NMR relaxation and/or diffusion have been used to investigate water and oil dynamics in food and micro-emulsion systems. In the case of Mozzarella and Gouda cheese samples, a significant change in D/T2 correlation is appearing with cheese aging. In the case of a water/toluene micro-emulsion, some evidence for coalescence effects is suggested by D/D exchange spectra.  相似文献   

12.
13.
In this study, the displacement processes were observed as gaseous or supercritical CO2 was injected into n-decane-saturated glass beads packs using a 400-MHz magnetic resonance imaging (MRI) system. Two-dimensional images of oil distribution in the vertical median section were obtained using a spin-echo pulse sequence. Gas channeling and viscous fingering appeared obviously in immiscible gaseous CO2 displacement. A piston-like displacement front was detected in miscible supercritical CO2 displacement that provided high sweep efficiency. MRI images were processed with image intensity analysis methods to obtain the saturation profiles. Final oil residual saturations and displacement coefficients were also estimated using this imaging intensity analysis. It was proved that miscible displacement can enhance the efficiency of CO2 displacement notably. Finally, a special coreflood analysis method was applied to estimate the effects of capillary, viscosity and buoyancy based on the obtained saturation data.  相似文献   

14.
The main objective of this article was (i) to refocus the residual dipolar and quadrupolar interactions in anisotropic tissues employing magic sandwich echo (MSE) imaging and to compare the results with that of conventional spin-echo (SE) imaging, and (ii) to quantify MSE relaxation and dispersion characteristics in bovine Achilles tendon and compare with spin-lattice relaxation time constant in the rotating frame (T(1rho)). Magic sandwich echo weighted images are approximately 75-100% higher in signal-to-noise ratio than the corresponding T(2)-weighted images. Magic sandwich echo relaxation times varied from 13+/-2 to 19+/-3 ms (mean+/-S.D.), depending upon the structural location of tendon. T(2) relaxation times only varied from 4+/-1 to 10+/-3 ms (mean+/-S.D.) on the same corresponding locations. Magic sandwich echo provides approximately 100% enhancement in relaxation times compared to T(2). Preliminary results based on bovine Achilles tendon and cartilage specimens suggest that the MSE technique has potential for refocusing residual dipolar as well as quadrupolar interactions in anisotropic systems and yields higher intensities than conventional SE imaging as well as T(1rho)-encoded imaging, especially at low-burst pulse amplitudes (250 and 500 Hz).  相似文献   

15.
Limitations of resolution and absorption in standard chemical spectroscopic techniques have made it difficult to study fluids in sedimentary rocks. In this paper, we show that a chemical characterization of pore fluids may be obtainedin situby magic angle spinning (MAS) nuclear magnetic resonance (NMR), which is normally used for solid samples.1H MAS–NMR spectra of water and crude oil in Berea sandstone show sufficient chemical shift resolution for a straightforward determination of the oil/water ratio.  相似文献   

16.
To determine how administration of a hyperosmotic agent alters regional nuclear magnetic resonance (NMR) relaxation parameters and imaging characteristics in ischemic-reperfused myocardium, 7 dogs were infused with mannitol for 15 minutes before and after the release of a 3 hour left anterior descending coronary artery (LAD) occlusion. Nine control animals received normal saline during the 3 hour occlusion and 1 hour reperfusion periods. Normal posterior left ventricular (LV) wall and the ischemic anterior LV wall (risk area) myocardium was sampled for calculation of segmental microsphere myocardial blood flow, % tissue water content, NMR relaxation times (T1, T2) and myocyte ultrastructure using electron microscopy. Mean infarct T1 values were 14% greater than normal segments in saline-treated controls, but only 5% greater after mannitol. The difference in tissue water content between infarcted and normal segments was 4% in saline-treated (83 vs. 79%) compared to 2% in mannitol-treated dogs (79 vs. 77%). T1, T2 and % water content of control infarct segments were greater than treated infarcts (p less than 0.01). T1 and T2 rose as occlusion flow fell below 0.5 ml/min/g in control hearts but did not rise until flows were reduced to 0.1 ml/min/g in mannitol-treated hearts. Areas of increased signal in T1 and T2 NMR images correlated well with histochemical infarct volume (r = 0.98, SEE = 1.1 cc) in mannitol-treated dogs, but infarct borders were qualitatively less well-defined than in controls. We concluded that mannitol (1) diminishes tissue edema and reduces NMR relaxation parameters (T1, T2) in infarcted myocardium; and (2) attenuates the rise in T1 and T2 and ultrastructural myocyte injury in ischemic-reperfused myocardium.  相似文献   

17.
Magnetic resonance for fluids in porous media at the University of Bologna   总被引:3,自引:0,他引:3  
The magnetic resonance in porous media (MRPM) community is now a vast community of scientists from all over the world who recognize magnetic resonance as an instrument of choice for the characterization of pore space and of the distribution, diffusion and flow of fluids inside a vast range of different materials. The MRPM conferences are the occasions in which this community gets together, compares notes and grows. The scene was different in 1990, when this series of conferences was promoted at Bologna. I will go briefly over the history of these events, showing the role played by the University of Bologna and in particular by the intuition, ingenuity and passion of Giulio Cesare Borgia. The MRPM work at Bologna began in the mid-1980s. New correlations were found among parameters from NMR relaxation measurements and oil field parameters such as porosity, permeability to fluid flow, irreducible water saturation, residual oil saturation and pore-system surface-to-volume ratio, and fast algorithms were developed to give the different NMR parameters. Interest in valid interpretation of data led to extensive work also on the inversion of multiexponential relaxation data and the effects of inhomogeneous fields from susceptibility differences on distributions of relaxation times. In the last few years, extensive developments were made of combined magnetic resonance imaging and relaxation measurements in different fields.  相似文献   

18.
NMR properties of petroleum reservoir fluids   总被引:4,自引:0,他引:4  
NMR well logging of petroleum reservoir require the measurement of the NMR response of water, oil, and gas in the pore space of rocks at elevated temperatures and pressures. The viscosity of the oil may range from less than 1 cp to greater than 10,000 cp. Also, the oil and gas are not a single component but rather a broad distribution of components. The log mean T1 and T2 relaxation time of dead (gas free) crude oils are correlated with viscosity/temperature and Larmor frequency. The relaxation time of live oils deviate from the correlation for dead crude oils. This deviation can be correlated with the methane content of the oil. Natural gas in the reservoir has components other than methane. Mixing rules are developed to accommodate components such as ethane, propane, carbon dioxide, and nitrogen. Interpretation of NMR logs uses both relaxation and diffusion to distinguish the different fluids present in the formation. Crude oils have a broad spectrum of components but the relaxation time distribution and diffusion coefficient distribution are correlated. This correlation is used to distinguish crude oil from the response of water in the pores of the rock. This correlation can also be used to estimate viscosity of the crude oil.  相似文献   

19.
A fast spin echo two-point Dixon (fast 2PD) technique was developed for efficient T2-weighted imaging with uniform water and fat separation. The technique acquires two interleaved fast spin echo images with water and fat in-phase and 180° out-of-phase, respectively, and generates automatically separate water and fat images for each slice. The image reconstruction algorithm uses an improved and robust region-growing scheme for phase correction and achieves consistency in water and fat identification between different slices by exploiting the intrinsic correlation between the complex images from two neighboring slices. To further lower the acquisition time to that of a regular fast spin echo acquisition with a single signal average, we combined the fast 2PD technique with sensitivity encoding (SENSE). Phantom experiments show that the fast 2PD and SENSE are complementary in scan efficiency and signal-to-noise ratio (SNR). In vivo data from scanning of clinical patients demonstrate that T2-weighted imaging with uniform and consistent fat separation, including breath-hold abdominal examinations, can be readily performed with the fast 2PD technique or its combination with SENSE.  相似文献   

20.
Objective: Magnetic resonance imaging (MRI) acquisition is inherently sensitive to motion, and motion artifact reduction is essential for improving image quality in MRI. Methods: We developed a deep residual network with densely connected multi-resolution blocks (DRN-DCMB) model to reduce the motion artifacts in T1 weighted (T1W) spin echo images acquired on different imaging planes before and after contrast injection. The DRN-DCMB network consisted of multiple multi-resolution blocks connected with dense connections in a feedforward manner. A single residual unit was used to connect the input and output of the entire network with one shortcut connection to predict a residual image (i.e. artifact image). The model was trained with five motion-free T1W image stacks (pre-contrast axial and sagittal, and post-contrast axial, coronal, and sagittal images) with simulated motion artifacts. Results: In other 86 testing image stacks with simulated artifacts, our DRN-DCMB model outperformed other state-of-the-art deep learning models with significantly higher structural similarity index (SSIM) and improvement in signal-to-noise ratio (ISNR). The DRN-DCMB model was also applied to 121 testing image stacks appeared with various degrees of real motion artifacts. The acquired images and processed images by the DRN-DCMB model were randomly mixed, and image quality was blindly evaluated by a neuroradiologist. The DRN-DCMB model significantly improved the overall image quality, reduced the severity of the motion artifacts, and improved the image sharpness, while kept the image contrast. Conclusion: Our DRN-DCMB model provided an effective method for reducing motion artifacts and improving the overall clinical image quality of brain MRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号