首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
本文用激光选位时间分辨光谱技术,研究了Nd_xY_(1-x)PO_4晶体系统的浓度猝灭和Nd~(3+)离子一离子相互作用。结果表明,浓度猝灭比五磷酸钕系统强,猝灭速率与 x~2有线性关系。激光选位时间分辨光谱揭示,在Nd_(0.03)Y_(0.97)PO_4中,Nd~(3+)处于多种不等价的晶场格位中。由选位光谱对时间和温度的关系发现,处于不等价格位中的Nd~(3+)离子通过共振能量为δ=117cm~(-1)的二声子参助过程进行能量转移。确定了转移速率ω_s=2.7×10~4s~(-1),室温下激发能量扩散系数为 D_(300K)=2.15×10~(-9)cm~2·s~(-1)和扩散长度为 l_(300K)=14.4×10~(-7)cm。  相似文献   

2.
林治全  于春雷  何冬兵  冯素雅  张磊  陈丹平  胡丽丽 《物理学报》2017,66(16):164204-164204
以970 nm和808 nm半导体激光器作为抽运源,从光纤长度和抽运功率两个方面,探讨了Nd~(3+)/Yb~(3+)摩尔浓度比约为4:1的共掺磷酸盐玻璃光纤的发光与激光特性.在970 nm抽运下,光纤光谱以Yb~(3+)离子的发光为主,但Yb~(3+)→Nd~(3+)能量传递会对光纤光谱(激光和受激放大自发辐射)产生调制作用,调制作用随970 nm抽运功率或光纤长度的增加而显著,甚至出现显著的双波长激光现象.尽管玻璃样品中Nd~(3+)→Yb~(3+)的能量传递效率ηNd→Yb高达64%,但在808 nm抽运下,激光峰始终在1053 nm附近产生,且与808 nm抽运功率大小和光纤长度无关.为解释这一现象,推导了考虑Nd~(3+)离子受激辐射的能量传递模型.从理论模型来看,Nd~(3+)→Yb~(3+)能量传递作用随Nd~(3+)离子受激辐射信号光强度的增加而迅速减弱,这与该光纤实际测试的荧光光谱随808 nm抽运功率的变化规律相符合.因此,当采用Nd~(3+)离子来敏化Yb~(3+)离子时,需要考虑Nd~(3+)离子的受激辐射对Nd~(3+)→Yb~(3+)能量传递的抑制作用.  相似文献   

3.
采用高温固相法在1 300℃煅烧2小时制备了不同浓度Dy~(3+)离子掺杂的YNbO_4微晶粉末,测量了样品的X射线衍射谱,结果表明生成了纯相YNbO_4微晶结构。采用漫反射积分球和光纤光谱仪测量了样品吸收谱,并通过Judd-Ofelt理论计算了Dy~(3+)掺杂YNbO_4微晶粉末样品的光谱强度参数Ω_2、Ω_4、Ω_6,以及实验和理论振子强度。测量了监测波长为577 nm的样品激发谱,结果表明在260 nm处有一个强激发峰,其主要由YNbO_4晶格吸收产生,在其他波段还有几个较强激发峰,主要归因于Dy~(3+)离子的4f-4f跃迁。测量了270 nm和360 nm波长激发下的发射谱,观察到了相似的发射峰分布。通过不同Dy~(3+)掺杂浓度样品发射峰比较,发现了浓度猝灭效应。根据能量传递理论分析表明,Dy~(3+)离子的浓度猝灭属于电偶极-电偶极相互作用。最后,计算了样品的CIE色坐标,发现最接近于白光区域的色坐标为(0.219, 0.166)。  相似文献   

4.
单离子掺杂体系单一基质白光荧光粉可以有效克服紫外芯片+三基色荧光粉获得白光方案中颗粒分散性和沉降性不均的问题,克服荧光粉彼此间发光再吸收及三基色配比调控等问题.本文采用熔融盐法制备了Sm~(3+)离子单掺NaLa(WO_4)_2:x Sm~(3+)白光荧光粉.在紫外光激发下,WO_4~(2-)自激活发出的蓝绿光,与Sm~(3+)发射的绿光、黄光、橙光和红光混合得到了白光.在250 nm激发下,荧光粉会发出冷白光;在403 nm激发下会发出暖白光.随着Sm~(3+)掺杂浓度增加,相对色温逐渐降低.所制备的样品均为纯的四方相结构,晶粒形貌为不规则菱形薄片.通过分析实验数据确定Sm~(3+)离子间的能量猝灭类型为电偶极-电偶极作用.得到的NaLa(WO_4)_2:x Sm~(3+)荧光粉具有较高的稳定性,能被近紫外LED芯片有效地激发,可作为单离子掺杂单一基质白光荧光粉潜在候选.  相似文献   

5.
采用溶胶凝胶法制备了Y_4Zr_3O_(12)∶Eu~(3+)纳米荧光粉,分别采用XRD、TEM和荧光光谱仪对样品的结构、形貌和发光性能进行了表征,探讨了烧结温度和Eu~(3+)掺杂浓度对荧光粉发光性能的影响。结果表明,样品可以被394 nm和467 nm的激发光有效激发。样品的最佳烧结温度和Eu~(3+)离子的最佳掺杂摩尔分数分别为1 400℃和18%。浓度猝灭主要归因于电偶极-电偶极相互作用。  相似文献   

6.
赵旺  平兆艳  郑庆华  周薇薇 《物理学报》2018,67(24):247801-247801
采用高温固相法成功合成出双钙钛矿结构SrGd_(1-x)LiTeO_6:xEu~(3+)(x=0.1-1.0)红色荧光粉,并采用X-射线衍射、漫反射光谱、光致发光光谱、电致发光光谱等测试手段对粉体的结构、光致发光特性以及发光二极管器件的光色电特性进行了系统研究.激发光谱、发射光谱和荧光衰减曲线测试结果表明Eu~(3+)的最佳掺杂浓度为x=0.6,更大的掺杂量会引起浓度猝灭.基于van Uitert浓度猝灭公式,提出一种更准确的表达形式用于拟合、分析能量传递类型,揭示出电偶极-电偶极作用导致浓度猝灭.Judd-Ofelt理论计算得出较高的跃迁强度参数和量子效率,说明高度畸变的非心C_1晶体场促使高效的超灵敏跃迁红光发射.在423 K时积分发光强度达到室温时的85.2%,热激活能经计算为0.2941 eV.基于此样品的发光二极管能够发出明亮的红光.综上所述,该类荧光粉表现出良好的发光效率、色纯度以及发光热稳定性,是一种潜在的近紫外激发白光发光二极管用红色荧光粉.  相似文献   

7.
我们研究了一种测量固体中荧光离子绝对辐射量子效率的简单技术,可用于具有荧光度猝灭的体系,该技术需要测量光声讯号和荧光寿命随离子浓度的变化。将这种技术应用于ED2玻璃中Nd~(3+)的激光上能级,得到的量子效率稍低于以前估计和测量所获得的数值。  相似文献   

8.
采用微波辐射法合成了一系列的Ca_(1-x)MoO_4∶x Dy~(~(3+))(0x≤0.12)和Ca_(0.98)(Mo O_4)_(1-1.5y)(PO_4)y∶0.02Dy~(3+)(0≤y≤0.10)黄绿色荧光粉,分别用X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)和荧光分光光度计对荧光粉的物相结构、微观形貌、发光特性进行了分析和表征。结果表明:所制得的CaMoO_4∶Dy~(3+)晶体结构与Ca Mo O4相似,为四方晶系、白钨矿结构。样品颗粒呈立方形,边长约为5μm,且是由尺寸约为120~540 nm的类球形小颗粒组成。样品的最大激发峰位于300 nm处。发射光谱由一系列尖峰组成,最强发射峰位于572 nm处,对应于Dy~(3+)的4F9/2→6H13/2跃迁,发光强度随Dy~(3+)浓度的增加先增大后减小,当Dy~(3+)摩尔分数为0.02时发光强度最大,而后随Dy~(3+)浓度的增加,发生了浓度猝灭效应。由Dexter浓度猝灭理论知,Dy~(3+)浓度猝灭主要为电偶极-电偶极相互作用和Dy~(3+)离子间交叉弛豫造成的。在254 nm波长激发下,Ca Mo O4∶Dy~(3+)的色坐标集中在黄绿光区域。此外,PO3-4的掺杂有效提高了CaMoO_4∶Dy~(3+)体系的发光亮度,PO_4~(3-)的最佳掺杂量为y=0.04,此时样品的发光强度比未掺杂样品提高了约19%。  相似文献   

9.
采用溶胶-凝胶法制备了KBa Gd(Mo O_4)_3∶Dy~(3+)荧光粉,并借助于扫描电镜(SEM)、X射线粉末衍射(XRD)、激发光谱、发射光谱及荧光衰减曲线等测试手段对其形貌、结构及光谱性能进行了分析。结果显示:与高温固相反应法相比,采用溶胶-凝胶法得到的样品粒径均匀,且形状更加规则。在近紫外光(390 nm)的激发下,KBa Gd(Mo O_4)_3∶Dy~(3+)荧光粉的两个主发射峰分别位于485 nm与577 nm处,样品蓝黄比约为0.7。在KBa Gd(Mo O_4)_3基质中,Dy~(3+)离子的最佳掺杂摩尔分数为10%,引起浓度猝灭的机理是激活离子间的电偶极间相互作用。随着Dy~(3+)离子浓度的升高,样品荧光寿命缩短,且荧光衰减曲线逐渐偏离单指数变化。  相似文献   

10.
采用高温固相法制备了Sr_3LiSbO_6∶Eu~(3+)(SLSO∶Eu~(3+))红色荧光粉。系统研究了Eu~(3+)浓度对发光强度的影响,并对样品进行了XRD、荧光光谱(PL)、荧光寿命、热稳定性和色坐标分析。结果表明,制备的荧光粉Sr_3LiSbO_6∶Eu~(3+)可被紫外光激发,并在612 nm处表现出较强的红光发射带。研究了样品的浓度猝灭效应,样品的最佳掺杂浓度为0.04%,猝灭主要是因为偶极-偶极相互作用引起的。此外,还探讨了样品的热稳定性,在423 K时的发光强度为室温下的43.1%。最后对样品的荧光寿命和CIE进行了测试。以上结果表明制备的荧光粉Sr_3LiSbO_6∶Eu~(3+)是一种新型LED红色荧光材料。  相似文献   

11.
本文通过实验研究了UO_2~(2+):硅酸盐玻璃的光谱性质.报导了吸收光谱、荧光光谱、荧光寿命τ、受激发射截面σ和量子效率η等结果。也给出了辐射和无辐射跃迁几率对温度的关系以及浓度猝灭和温度猝灭曲线.结果说明玻璃是UO_2~(2+)的很好的基质.产生激光作用不是没有希望的.  相似文献   

12.
利用高温固相法制备了BaGd_2(MoO_4)_4∶Tb~(3+)与BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)荧光粉,并借助于X射线衍射(XRD)、激发光谱、发射光谱及荧光衰减曲线对样品的结构及发光性能进行了表征。在290 nm激发下,BaGd_2(MoO_4)_4∶Tb~(3+)样品在550 nm处具有较强的绿光发射,表明该样品可用作绿色荧光粉。Tb~(3+)离子的最佳掺杂浓度为50%,电偶极间相互作用是引起浓度猝灭效应的主要原因。当在BaGd_2(MoO_4)_4∶Tb~(3+)荧光粉中共掺入Eu~(3+)离子后,可同时观测到Tb~(3+)与Eu~(3+)离子的特征发射峰。随Eu~(3+)掺杂浓度的升高,Tb~(3+)离子的发光强度逐渐下降,而Eu~(3+)离子的发光强度逐渐增加。根据BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)中Tb~(3+)离子的荧光寿命计算了Tb~(3+)与Eu~(3+)离子间的能量传递效率,并根据荧光寿命与激活离子掺杂浓度的关系证实了能量传递机制为电偶极间相互作用。  相似文献   

13.
M3La(BO3)3(M=Ca,Sr,Ba)基质中Eu3+的光致发光   总被引:1,自引:0,他引:1  
研究了M3La(BO3)3(M=Ca,Sr,Ba)基质中Eu3+的激发光谱和发射光谱.结果表明,最强激发峰均为394nm,并均有λ<300nm的较强电荷迁移带;按Ca-Sr-Ba的顺序,各发射峰峰值逐渐红移;Eu3+的最佳发射浓度分别为xEu3+=0.10、0.09、0.20;Eu3+的5D0→7F2跃迁发射的浓度猝灭机理分别为电偶极-四极、电偶极-偶极和电偶极-偶极相互作用.  相似文献   

14.
采用高温熔融淬火法成功的合成了Tm~(3+)/Yb~(3+)共掺杂的含有不同浓度Tm~(3+)的氟氧化物碲酸盐玻璃.测量了样品的吸收光谱,结果表明Yb~(3+)和Tm~(3+)成功掺入到玻璃基质中.在980nm激发下,样品在801nm(3H4→3H6)发射最强,在476nm(1G4→3H6)和651nm(1G4→3F4)发射较弱;分析了上转换发光强度与Tm~(3+)浓度依赖关系,确定了上转换发光的最佳掺杂浓度为0.1%Tm2O3;探讨Tm~(3+)的上转换发光机理和Tm~(3+)的浓度猝灭机理,结果表明在980nm激发下Tm~(3+)获得的能量主要来自于Yb~(3+)→Tm~(3+)的量传递,Tm~(3+)的浓度猝灭机理为Tm~(3+)-Tm~(3+)之间的交叉弛豫导致的无辐射能量传递,根据能量匹配的原则,给出可能的交叉弛豫通道.此外,在980nm激发以3F2,3和3H4作为热耦合能级研究分析了Tm~(3+)在氟氧化物碲酸盐玻璃中的温度传感性能,结果表明灵敏度随温度的升高而升高,说明Tm~(3+)掺杂的氟氧化物碲酸盐玻璃可以作为光纤传感材料,且在高温灵敏度更佳.  相似文献   

15.
研究了在不同激发波长下三价钐离子掺杂硫氧化钇的发光强度对浓度的依赖关系。研究发现磷光体的发光强度不仅跟激活离子的浓度有关,而且跟激发时所采用的不同激发波长有关。磷光体发光强度与激活剂掺杂量的变化曲线表明,在不同激发路径下磷光体具有不同的发光性质。采用Sm^3 离子直接跃迁的413nm对样品进行激发时,发生猝灭的浓度低至约0.2mol%;当采用263nm高能紫外线激发时,浓度猝灭发生在较高浓度处(~2mol%),后者是前者的10倍。对Sm^3 离子发射强度与浓度关系曲线进行了拟合计算,结果表明Sm^3 在Y2O2S中浓度猝灭的原因主要是相邻中心的偶极-四极相互作用引起的交叉弛豫。  相似文献   

16.
本文中报道了磷酸盐玻璃中Nd~(3+),Yb~(3+)的时间分辨谱和激发能量的转移。通过实验确定了在不同温度下的转移速率。证实了Nd~(3+)→Yb~(3+)的能量转移机构为从~4F_(3/2)(Nd~(3+))到~2F_(5/2)(Yb~(3+))并同时产生单声子发射的过程;而从Yb~(3+)到Nd~(3+)可能有两种转移途径;一是从~2F_(5/2)(Yb~(3+))到~4F_(3/2)(Nd~(3+))同时吸收一个声子,另一是从~2F_(3/2)(Yb~(3+))到~4I_(13/2)(Nd~(3+)),同时产生四声子发射的过程。因此Yb~(3+)→Nd~(3+)的转移速率强烈地依赖于温度。室温下,Nd~(3+)→Yb~(3+)和Yb~(3+)→Nd~(3+)的转移时间分别为~197μs和13ms,转移效率分别为47%和8%。当600K时,Yb~(3+)→Nd~(3+)的转移效率可增加到37%,转移时间缩短为2ms。  相似文献   

17.
Tm3+掺杂的MFT玻璃蓝色荧光动力学   总被引:1,自引:1,他引:0  
测量了Tm^3 掺杂的MFT玻璃材料的吸收光谱,J-O计算给出了该材料的光学跃迁强度参数Ωt(t=2,4,6)。测量了355nm激发下该材料的发射光谱,通过测量不同掺杂浓度Tm^3 的^1D2→^3H4和^1G4→^3H6荧光衰减曲线讨论了这两个能级寿命及荧光量子效随浓度的变化关系,计算当Tm^3 浓度的4%时引起^1D2和^1G4荧光猝灭的能量传递效率。指出了^1D2→^3H4的荧光猝灭属于电偶极-电偶极相互作用的能量传递所导致。  相似文献   

18.
采用改进过的布里奇曼法成功地生长了Tm~(3+)离子浓度从0.5~4mol%变化的高质量Na_5Lu_9F_(32)单晶.在790nm LD激发下,研究了不同Tm~(3+)掺杂晶体在1.86μm波段的荧光发射性能、衰减曲线以及Tm~(3+)离子之间的能量传递过程.当Tm~(3+)离子掺杂浓度增加到~1.95mol%时,晶体在1.86μm处的荧光发射强度达到最大.然后,随着Tm~(3+)离子浓度进一步的增大,发射强度迅速下降.然而,Tm~(3+)离子在3F4能级处的荧光寿命随着Tm~(3+)掺杂浓度从0.5增加到4mol%,逐渐降低.同时计算了1.86μm处最大的受激发射截面为0.80×10~(-20) cm~2.Tm~(3+)离子的浓度猝灭效应和离子之间的交叉弛豫能量传递过程是造成1.86μm荧光发射变化的主要原因.  相似文献   

19.
金叶  陈远豪  刘浩文  姚静 《发光学报》2019,40(2):159-163
采用高温固相法制备了Na_(8. 33)La_(1. 67)(SiO_4)_6O_2∶Eu~(3+)红色发光材料,利用X射线衍射仪测定其晶体结构,利用Hitachi F4600表征其发光光谱。在紫外光激发下,样品Na_(8. 33)La_(1. 67)(SiO_4)_6O_2∶Eu~(3+)呈多峰发射,分别对应于Eu~(3+)的~5D_0-~7F_j(j=0,1,2,3,4)能级跃迁,主峰是位于615 nm的~5D_0-~7F_2跃迁发射。研究了Eu~(3+)掺杂浓度对材料发光性质的影响,改变Eu~(3+)掺杂浓度,样品的发射强度随之改变,Na_(8. 33)La_(1. 67)(SiO_4)_6O_2∶Eu~(3+)材料的Eu~(3+)浓度为15%时,发光强度最大。讨论了浓度猝灭的机理,理论计算表明引起Eu~(3+)离子能量弥散的主要原因是离子间交换相互作用。  相似文献   

20.
采用坩埚下降法生长出Ho~(3+)离子掺杂浓度~1.90 mol%、Tm~(3+)不同掺杂离子浓度(0.99mol%,1.58mol%,2.37 mol%,3.16 mol%,3.99 mol%,7.19 mol%)的双掺杂立方晶相NaYF_4单晶体.根据测定的吸收光谱以及800nmLD波长激发下的发射光谱、发射截面和衰减曲线,研究从Tm~(3+)离子到Ho~(3+)离子的能量传递机制、Tm~(3+)离子的浓度猝灭效应和Ho~(3+)离子在2.04μm波段的优化发光效应.当Ho~(3+)离子浓度保持为~1.90 mol%不变,Tm~(3+)离子浓度从0.99 mol%增加到1.59mol%时,2.04μm波段的发射强度逐步增强;当浓度从1.59mol%增加到7.19mol%时,发射强度逐步减弱.Ho~(3+)(1.90 mol%)/Tm~(3+)(1.59 mol%)共掺的单晶体的发射截面最大,达到2.17×10-20 cm~2,其荧光寿命最长,为21.72ms;同时,根据Ho~(3+)离子的吸收截面和Tm~(3+)离子的发射截面,计算得到该样品从Tm~(3+)∶3F~(3+)4→Ho∶5I7稀土离子能量传递系数和Ho~(3+)∶~5I_7→Tm~(3+)∶~3F_4反传递系数分别为C_(Tm-Ho)=24.14×10~(-40)cm~6/s,C_(Ho-Tm)=2.05×10~(-40) cm~6/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号