首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have analyzed the magnetic and binding properties of Ni, Cr, Mo, and Pt metals deposited on the defect free and defect containing surfaces of MgO by means of density functional theory calculations and embedded cluster model. Clusters of moderate sizes with no border anions, to avoid artificial polarization effects, were embedded in the simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces. Spin quenching occurs for Cr and Mo complexes at the defect free (terrace) surface, and Cr, Mo, and Pt complexes at the defect containing “pit” divacancy surface. The binding energies of the metals are significantly enhanced on the cationic vacancy end of the divacancy. The adsorption energies of the low spin states of spin quenched complexes are always greater than those of the high spin states. The metal-support interactions stabilize the low spin states of the adsorbed metals with respect to the isolated metals, but the effect is not always enough to quench the spin. The encountered variations in magnetic properties of free metals and of metal complexes are correlated with the energy gaps of the frontier orbitals. Spin contamination affect the adsorbate-substrate distances, Mulliken charges, Mulliken spin densities, natural charge, natural orbital population, and provide rationalization for the reported magnetic and binding properties. The electrostatic potential energy curves provide clearer understanding of the nature of magnetic and binding interactions. The magnetic and binding properties of a single metal atom adsorbed on a particular surface result from a competition between Hund's rule for the adsorbed metal, and the formation of a chemical bond at the interface.  相似文献   

2.
This paper reports on the spectroscopy properties, absorption and luminescence, of Cr3+ ions in singly doped, ZnO-codoped, and Zn in-diffused LiNbO3:Cr crystals. In addition to the broad absorption, inter-ionic transitions ascribed to Cr3+ ions located in Li+ and Nb5+ sites; [Cr]Li and [Cr]Nb centres two absorption bands at higher energy are reported and ascribed to the charge transfer transitions of the Cr3+ ions of the two defect centres. The charge transfer transitions are used as optical probe to study the role of the Zn ions in the Zn in-diffused LiNbO3:Cr samples. It has been observed that the Zn-in-diffused processes created [Cr]Nb centres in the diffusion zone. The location of the diffused Zn2+ ions is considered to be in Li+ site, displacing the Cr3+ ions from the Li+ sites, [Cr]Li, to the Nb5+ positions, [Cr]Nb.  相似文献   

3.
Room-temperature photoluminescence (PL) was observed in undoped and 2 mol % Cr-, Al- and Y-doped amorphous SrTiO3 thin films. Doping increased the PL, and in the case of Cr significantly reduced the associated PL wavelength. The optical bandgaps, calculated by means of UV–vis absorption spectra, increased with crystallinity and decreased with the doping level. It was considered that yttrium and aluminum substituted Sr2+, whereas chromium replaced Ti4+. It is believed that luminescence centers are oxygen-deficient BO6 complexes, or the same centers with some other defects, such as oxygen or strontium vacancies, or BO6 complexes with some other defects placed in their neighborhood. The character of excitation and the competition for negatively charged non-bridging oxygen (NBO) among numerous types of BO6 defect complexes in doped SrTiO3 results in various broadband luminescence peak positions. The results herein reported are an indicative that amorphous titanates are sensitive to doping, which is important for the control of the electro-optic properties of these materials. The probable incorporation of Cr into the Ti site suggests that the existence of a double network former can lead to materials displaying a more intense photoluminescence. Received: 20 November 2001 / Accepted: 22 November 2001 / Published online: 27 March 2002  相似文献   

4.
《Solid State Ionics》2006,177(33-34):2939-2944
The bulk defect structure in Cr2−xTixO3 (x = 0.05, 0.20 and 0.30) has been studied by X-ray absorption spectroscopy measurements at the Cr and Ti K-edges. The results show that the Ti is predominantly present in the IV oxidation state and resides on the normal Cr host lattice site. The dopant is charge compensated by Cr3+ vacancies and there is evidence for the formation of defect clusters; however, the detailed structure of these clusters could not be deduced.  相似文献   

5.
Cr/SiO2 catalysts with 1 or 3 wt.% Cr loadings and different chromium precursors were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). A method to determine chromium species in the sample was developed through the decomposition of the Cr 2p XPS spectrum in Cr6+ and Cr3+ standard spectra. The results of the binding energy from the Cr 2p region and of the distribution of chromium species allowed to evaluate the dynamic photo-reduction of the surface chromium species during XPS analysis. Photo-reduction of surface Cr6+ to Cr3+ species was verified for all samples supported in silica, depending on the precursor and chromium content. Bulk CrO3 and Cr2O3 standards did not reveal variation in the binding energy of Cr 2p3/2, but a physical mixture of CrO3 with SiO2 presented photo-reduction. The behavior of this mixture resembled to the catalysts and suggests the participation of the surface hydroxyls of silica in the photo-reduction process. XPS intensity measurements for assessing dispersion of chromium oxide were used to compare the calcined and reduced catalysts to different chromium precursors. Polyethylene chains were detected by in situ XPS, while oligomerization products were not observed.  相似文献   

6.
A series of Cr-doped ZnO micro-rod arrays were fabricated by a spray pyrolysis method. X-ray diffraction patterns of the samples showed that the undoped and Cr-doped ZnO microrods exhibit hexagonal crystal structure. Surface morphology analysis of the samples has revealed that pure ZnO sample has a hexagonal microrod morphology. From X-ray photoelectron spectroscopy studies, the Cr 2p3/2 binding energy is found to be 577.3 eV indicating that the electron binding energy of the Cr in ZnO is almost the same as the binding energy of Cr3+ states in Cr2O3. The optical band gap Eg decreases slightly from 3.26 to 3.15 eV with the increase of actual Cr molar fraction from x = 0.00 to 0.046 in ZnO. Photoluminescence studies at 10 K show that the incorporation of chromium leads to a relative increase of deep level band intensity. It was also observed that Cr doped samples clearly showed ferromagnetic behavior; however, 2.5 at.% Cr doped ZnO showed remnant magnetization higher than that of 1.1 at.% and 4.6 at.% Cr doped samples, while 4.6 at.% Cr doped ZnO samples had a coercive field higher than the other dopings.  相似文献   

7.
《Solid State Ionics》2006,177(19-25):1767-1770
The defects in Cr2−xTixO3 (x = 0, 0.2 and 0.3) were studied by a combination of X-ray diffraction, density and electrical conductivity measurements supported by atomistic simulation. The results are consistent with the Ti being dissolved as Ti4+ compensated by Cr vacancies which associate to form complex defects of lower energy. Ti doping gives n-type semiconductivity due to a small concentration of Ti3+ in equilibrium with the complexes.  相似文献   

8.
We have investigated chromium layers evaporated onto a thin alumina film at room temperature. The oxidation and reduction behavior of this model catalyst was compared to atomic layer deposition (ALD) and impregnated alumina supported catalysts using X-ray photoelectron spectroscopy (XPS) with a detailed analysis method utilizing asymmetric peak shapes to represent both metallic and oxidic states. The ALD and impregnated catalysts were measured after calcination in air and after reduction with several gases at 850 K. Both catalysts show Cr3+ and Cr6+ species after calcination and mostly Cr3+ after reduction. The chromium layers deposited in vacuum show initially small partial oxidation due to the interaction with the oxygen terminated alumina film. These model catalysts can be oxidized in vacuum to Cr3+ species but not to higher oxidation states. The model catalysts were also subjected to calcination and reduction treatments after deposition in vacuum. Under these conditions the model systems exhibit similar oxidation/reduction behavior as the supported catalysts. Photoreduction of Cr6+ during the measurements was also studied and found to be very slow having a negligible effect on the results.  相似文献   

9.
The effects of mono-doping of 4f lanthanides with and without oxygen vacancy defect on the electronic structures of anatase TiO2 have been studied by first-principles calculations with DFT+U (DFT with Hubbard U correction) to treat the strong correlation of Ti 3d electrons and lanthanides 4f electrons. Our results revealed that dopant Ce is easy to incorporate into the TiO2 host by substituting Ti due to its lower substitutional energy (∼−2.0 eV), but the band gap of the system almost keeps intact after doping. The Ce 4f states are located at the bottom of conduction band, which mainly originates from Ti 3d states. The magnetic moment of doped Ce disappears due to electron transfer from Ce to the nearest O atoms. For Pr and Gd doping, their substitutional energies are similar and close to zero, indicating that both of them may also incorporate into the TiO2 host. For Pr doping, some 4f spin-down states are located next to the bottom of the conduction band and narrow the band gap of the doping system. However, for Gd doping, the 4f states are located in deep valence band and there is no intermediate band in the band gap. The magnetic moment of dopant Gd is close to the value of isolated Gd atom (∼7 μB), indicating no overlapping between Gd 4f with other orbitals. For Eu, it is hard to incorporate into the TiO2 host due to its very higher substitutional energy. The results also indicated that oxygen vacancy defect may enhance the adsorption of the visible light in Ln-doped TiO2 system.  相似文献   

10.
Nanosized ZnGa2O4:Cr3+ powder is synthesized through hydrothermal method. The average particle size is 20 nm and they are spherical in shape. The excitation band from the charge transfer between Cr3+-O2− shows a blueshift behavior due to quantum confinement effect. X-ray diffraction pattern, Fourier transform-infrared spectrum, and electron paramagnetic resonance signal indicate that nanosized ZnGa2O4:Cr3+ phosphor shows many defect-related energy states and heavy lattice distortion in comparison with bulk ZnGa2O4:Cr3+ phosphor. Many defect states result in more nonradiative loss and shorter decay time.  相似文献   

11.
The paper deals with optical and electronic properties of the aluminophosphate glasses containing Fe–Mn and Fe–Cr ion pairs in different concentration. The influence of the mixed alkali ions over the electronic properties has been investigated. The optical behavior (optical transmission) of the glass samples has been studied by UV-VIS spectroscopy and the refractive index dependency on wavelength has been discussed. The transmission spectra show features specific for the doping transition ions (TM), revealing different oxidation states of iron (Fe2+/Fe3+), manganese (Mn2+/Mn3+) and chromium (Cr3+/Cr6+) in the vitreous network. Mössbauer spectroscopy offers information regarding the TM oxidation states, redox processes and the iron coordination symmetry in the vitreous network. In the case of Fe–Mn doped glasses, the percentage of Fe2+ is about 40% and a doubled iron content leads to an increasing of Fe2+ percentage up to 53%. The replacing of lithium ions by natrium ions (mixed alkali effect) provides an increasing of the Fe2+ percentage up to 56%. The occurrence of the tetrahedral or octahedral symmetry of Fe2+ ions bonded by O2? ions depends on the transition ion nature and Li+/Na+ ratio. Infrared absorption spectra of the pair transition ions-doped aluminophosphate glasses reveal optical phonons specific for the phosphate glass matrix.  相似文献   

12.
The electronic and geometric structures and photodissociation dynamics of the chromium trimer ion, Cr3 +, were investigated by photodissociation spectroscopy in the photon-energy range from 1.32 to 5.52 eV. The branching fractions of the product ions, Cr+ and Cr2 +, exhibit stepwise changes at the threshold energies for dissociation into Cr++Cr2, Cr+Cr2 +, Cr++2Cr, and Cr*+Cr2 +. It is noted that Cr2 + is produced even above the threshold for atomization; the excess energy is redistributed to produce a fragment atom, Cr*, in an excited state. The photodissociation action spectrum is well explained by a mixture of simulated spectra for two nearly-degenerate structural isomers identified by density functional calculations: those having a metastable C2v structure and the most stable structure slightly distorted from the C2v one. The barrier height between the two isomers which is lower than the zero-point energy suggests that Cr3 + has an intrinsically floppy structure.  相似文献   

13.
本文采用基于第一性原理的GGA+U方法,计算研究了本征态锐钛矿TiO2和不同浓度Cr掺杂锐钛矿TiO2(1/8、1/16、1/32)的电子结构、磁性及光学性质。计算结果表明:所有掺杂体系中Ti0.9375Cr0.0625O2的结合能最小,因此Ti0.9375Cr0.0625O2体系的稳定性要高于Ti0.875Cr0.125O2、Ti0.96875Cr0.03125O2体系;Cr元素的掺入导致掺杂后体系发生晶格畸变,这有利于光生空穴和电子对的分离,提高其光催化性能;同时,由于Cr-3d和O-2p电子相互作用,使得掺杂体系呈现出铁磁性质,并且随着掺杂浓度的增加会使体系具有更好的铁磁性质;掺杂体系与本征TiO2相比,掺杂后吸收带边均发生红移,光谱响应范围变大;并且随掺杂浓度的增加,光响应范围也在增大,从而有效增强了体系对于可见光的吸收能力。  相似文献   

14.
胡明  王巍丹  曾晶  秦玉香 《中国物理 B》2011,20(10):102101-102101
Density functional theory (DFT) calculations are employed to explore the NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces. When Ti is doped into the WO3 surface, two substitution models are considered: substitution of Ti for W6c and substitution of Ti for W5c. The results reveal that substitution of Ti for 5-fold W forms a stable doping structure, and doping induces some new electronic states in the band gap, which may lead to changes in the surface properties. Four top adsorption models of NO2 on pure and Ti-doped WO3 (002) surfaces are investigated: adsorptions on 5-fold W (Ti), on 6-fold W, on bridging oxygen, and on plane oxygen. The most stable and likely NO2 adsorption structures are both N-end oriented to the surface bridge oxygen O1c site. By comparing the adsorption energy and the electronic population, it is found that Ti doping can enhance the adsorption of NO2, which theoretically proves the experimental observation that Ti doping can greatly increase the WO3 gas sensor sensitivity to NO2 gas.  相似文献   

15.
The chemical shift in electron binding energy, magnetic splitting of electron shells, and structures in the valence band are examined for chromium in the 3 + and 6 + oxidation states.The splitting of the Cr 3s energy level is associated with the appearance of a sharp Cr 3d line in the valence band. The relative chemical shift in the Cr 2p32 line between Cr2O3 and K2Cr2O7 is verified in the mixed compound KCr3O8 which contains both types of Cr ions, and the structure of this compound is verified by the X-ray photoelectron spectra. The spin-orbit intensity ratio of the 2p doublet of Cr6+ is 3, instead of the theoretical value of 2, and the spin-orbit splitting is less than for Cr3+. In the 3p level of Cr the relative chemical shift is 3.5 eV whereas for the 2p32 level the shift is only 2.4 eV. The differences in chemical shift and intensity ratio can not be explained.  相似文献   

16.
Q.F. Li  X.F. Zhu 《Physics letters. A》2008,372(16):2911-2916
The electronic structures and magnetic properties of double perovskites Sr2Fe1−xCrxReO6 (x=0.0, 0.25, 0.5, 0.75, 1.0) have been studied within the local spin density approximation (LSDA) and LSDA+U schemes. The calculated results reveal that with increasing Cr content the cell volume shrinks 2.61%; the Fe/Cr site magnetic moment decreases while the Re-site moment increases. The total spin magnetic moment linearly decreases with the Cr doping from 3.00μB for x=0.00 down to 1.00μB for x=1.00 per formula unit. The magnetic coupling constants increase with increasing x. The electronic structure calculations indicate that the electronic concentration in the Re spin-down subband slightly increases resulting from the increase of bonding-antibonding interaction between the localised and the delocalised states in spin-down band; the coupling of O-2p and transition-metal-3d is substantially enhanced with the Cr doping. We discuss the origin of the anomalously high TC of Cr-doped Sr2FeReO6 compounds in terms of band hybridization effects.  相似文献   

17.
Cr-doped mullites were prepared from single-phase precursors containing up to 9.60 wt% Cr2O3 using a sol-gel technique followed by thermal treatment. Particle induced X-ray emission spectroscopy and X-ray powder diffraction were used to characterize the samples. Mullites were orthorhombic, space group Pbam. Cr doping caused the increase of unit-cell parameters. Strongest expansion was noticed along c-axis followed by a and bc/c=0.089, Δa/a=0.061, Δb/b=0.045% per mole Cr2O3). A second phase, namely θ-(Al,Cr)2O3, was revealed by XRD in the sample containing 9.60 wt% Cr2O3. The structure of mullites was refined by the Rietveld method, location of Cr3+ was performed by the EPR spectroscopy. At low chromium doping level (Cr2O3 content less than ∼5 wt%) Cr3+ ions were substituted for Al3+ in the AlO6 octahedra of the mullite structure (M1 site). For higher doping level, Cr3+ ions were additionally substituted for Al3+ in the AlO6 octahedra of the second phase [θ-(Al,Cr)2O3 at 1400 °C, or α-(Al,Cr)2O3 at 1600 °C] which segregated in the system. Substitution of Cr3+ for Al3+ on M1 site in the mullite structure resulted in increase of average distances in (M1)O6 octahedron and decrease of average distances in T*O4 tetrahedron, while average distances in TO4 tetrahedron stayed almost constant.  相似文献   

18.
Low-temperature luminescence spectra of stoichiometric Cr:LiNbO3, congruent Cr:LiNbO3 and congruent Cr,Mg:LiNbO3 were studied. Dominant low-field and minor high-crystal-field optical centers are the Cr3+ impurity ions that preferentially occupy Li+ sites (CrLi) in the Cr:LiNbO3 crystals. Low-field centers related to Cr3+ substitution of Nb5+ (CrNb) occur in addition to CrLi in co-doped Cr,Mg:LiNbO3 samples. Application of high hydrostatic pressure leads to the transformation of dominant Cr3+ centers from low- to high-field type due to strong pressure-induced blue shift of the 4 T 2 state, resulting in its crossing with the 2 E state of Cr3+. This level-crossing effect was observed for the dominant Cr3+ Li and Cr3+ Nb centers at pressures that correlate well with estimations based on the 4 T 2-2 Eenergy gap (230 cm-1 and 1160 cm-1) and on the rate of their pressure-induced change (14.35 and 11.4 cm-1/kbar, respectively). We also studied inhomogeneous broadeningof the 2 E?4 A 2transitions at ambient pressure for the minor high-field “defect” Cr3+ Li centers in congruent LiNbO3. A fine structure in the spectral response of these centers was observed. The obtained results are discussed on the basis of a microscopic hierarchic model for perturbed Cr3+ ions in the LiNbO3 lattice. Received: 25 June 2001 / Published online: 2 November 2001  相似文献   

19.
DC electrical conductivity (σdc) of electron-doped antiferromagnetic CaMn1−xCrxO3 (0?x?0.3) has been discussed elaborately in the light of polaron hopping conduction. The increase in Cr doping concentration increases the conductivity and decreases the activation energy. Non-adiabatic polaron hopping conduction is observed in all the manganites at high temperatures. The analysis of σdc data shows that small polarons are formed at lower concentrations (?5%) of Cr doping and undoped samples. However, large polarons are materialized at higher doping (?10%) concentrations. This is consistent with the fact that doped Cr3+ has larger ionic size compared to that of Mn4+. Again, strong electron-phonon (e-ph) interaction is perceived in undoped and 5% Cr-doped samples but not in manganites with larger doping concentration. This also confirms the formation of larger polarons with the increase of x. Mott's variable range hopping (VRH) model can elucidate the dc conductivity at very low temperatures. It has been detected that single phonon-assisted hopping is responsible for the dc conduction in the Cr-doped CaMnO3 manganites.  相似文献   

20.
Electron energy loss spectra (ELS) have been obtained from polycrystalline Cr and Cr2O3 before and after surface reduction by 2 keV Ar+ bombardment. The primary electron energy used in the ELS measurements was systematically varied from 100 to 1150 eV in order to distinguish surface versus bulk loss processes. Two predominant loss features in the ELS spectra obtained from Cr metal at 9.0 and 23.0 eV are assigned to the surface and bulk plasmon excitations, respectively, and a number of other features arising from single electron transitions from both the bulk and surface Cr 3d bands to higher-lying states in the conduction band are also present. The ELS spectra obtained from Cr2O3 exhibit features that originate from both interband transitions and charge-transfer transitions between the Cr and O ions as well as the bulk plasmon at 24.4 eV. The ELS feature at 4.0 eV arises from a charge-transfer transition between the oxygen and chromium ions in the two surface layers beneath the chemisorbed oxygen layer, and the ELS feature at 9.8 eV arises from a similar transition involving the chemisorbed oxygen atoms. The intensity of the ELS peak at 9.8 eV decreases after Ar+ sputtering due to the removal of chemisorbed oxygen atoms. Sputtering also increases the number of Cr2+ states on the surface, which in turn increases the intensity of the 4.0 eV feature. Furthermore, the ELS spectra obtained from the sputtered Cr2O3 surface exhibit features characteristic of both Cr0 and Cr2O3, indicating that Ar+ sputtering reduces Cr2O3. The fact that neither the surface- nor the bulk-plasmon features of Cr0 can be observed in the ELS spectra obtained from sputtered Cr2O3 while the loss features due to Cr0 interband transitions are clearly present indicates that Cr0 atoms form small clusters lacking a bulk metallic nature during Ar+ bombardment of Cr2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号