首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the situation where a two-level atom is placed in the vicinity of the center of a spherical cavity with a large numerical aperture. The vacuum field at the center of the cavity is actually equivalent to the one obtained in a microcavity, and both the dissipative and the reactive parts of the atoms spontaneous emission are significantly modified. Using an explicit calculation of the spatial dependence of the radiative relaxation rate and of the associated level shift, we show that for a weakly excitating light field, the atom can be attracted to the center of the cavity by vacuum-induced light shifts.  相似文献   

2.
We have reported a modified V-shaped external cavity, which is constructed around a commercial diode laser operating at a center wavelength of λ=785 nm by adding a new coated glass plate with about 50% reflectivity to the cavity. This allows simultaneous dual-wavelengths operation in the vicinity of Δνmin=0.18 THz to Δνmax=0.22 THz, which can be used as laser source for terahertz generation either for semiconductor devices or nonlinear schemes.  相似文献   

3.

Narrow resonances of the intensities and oscillation frequencies of counterpropagating waves in the vicinity of the center of the quantum transition in a pure-isotope ring gas laser have been studied. It is shown that the origin of resonances is related to the presence of sources causing unequal losses and/or frequencies of the counterpropagating waves in the laser cavity. The resonance change of intensities, which is accompanied by the resonance behavior of the medium dispersion for each of the waves, is not related to resonance changes of the saturated gain coefficients of the nonlinear medium. The resonances are caused by the redistribution of energy between the waves. The character of resonance changes of frequencies and intensities depends on the nature of nonreciprocity present in the cavity.

  相似文献   

4.
When N driven atoms emit in phase into a high-Q cavity mode, the intracavity field generated by collective scattering interferes destructively with the pump driving the atoms. Hence atomic fluorescence is suppressed and cavity loss becomes the dominant decay channel for the whole ensemble. Microscopically, 3D light-intensity minima are formed in the vicinity of the atoms that prevent atomic excitation and form a regular lattice. The effect gets more pronounced for large atom numbers, when the sum of the atomic decay rates exceeds the rate of cavity losses and one would expect the opposite behavior. These results provide new insight into recent experiments on collective atomic dynamics in cavities.  相似文献   

5.
The construction of a near‐deterministic photonic hyperparallel quantum Fredkin (hyper‐Fredkin) gate is investigated for a three‐photon system with the optical property of a diamond nitrogen vacancy center embedded in an optical cavity (cavity‐NV center system). This hyper‐Fredkin gate can be used to perform double Fredkin gate operations on both the polarization and spatial‐mode degrees of freedom (DOFs) of a three‐photon system with a near‐unit success probability, compared with those on the double three‐photon systems in one DOF. In this proposal, the hybrid quantum logic gate operations are the key elements of the hyper‐Fredkin gate, and only two cavity‐NV center systems are required. Moreover, the possibility of constructing a high‐fidelity and high‐efficiency hyper‐Fredkin gate in the experimental environment of a cavity‐NV center system is discussed, which may be used to implement high‐fidelity photonic computational tasks in two DOFs with a high efficiency.  相似文献   

6.
The coupling of individual atoms to a high-finesse optical cavity is precisely controlled and adjusted using a standing-wave dipole-force trap, a challenge for strong atom-cavity coupling. Ultracold Rubidium atoms are first loaded into potential minima of the dipole trap in the center of the cavity. Then we use the trap as a conveyor belt that we set into motion perpendicular to the cavity axis. This allows us to repetitively move atoms out of and back into the cavity mode with a repositioning precision of 135 nm. This makes it possible to either selectively address one atom of a string of atoms by the cavity, or to simultaneously couple two precisely separated atoms to a higher mode of the cavity.  相似文献   

7.
The cavity enhanced absorption technique is applied to N2O detection around 2.86 μm using a continuous-wave color center laser. A high-finesse triangular ring cavity is used in this technology. Transmission through the cavity is obtained by jittering the cavity-length with a piezo on one of the cavity mirrors. A minimum detectable absorption coefficient of 2 × 10-6 cm-1 is achieved with a mirror reflectivity of 99.24%, corresponding to a N2O detection limit of 600 parts per billion.  相似文献   

8.
Tomaru T 《Optics letters》2001,26(18):1439-1441
A femtosecond Cr(4+):YAG laser with a simple two-element cavity was built. This laser typically attained a repetition rate of 2.64 GHz with a pulse width of 115 fs at a center wavelength of 1540 nm. Output pulses were characterized by second-harmonic generation frequency-resolved optical gating. Alignment of the two-element cavity for mode-locked operation was easy; moreover, the cavity structure has the potential to produce an even higher repetition rate because one can miniaturize it simply by shortening a gain medium length.  相似文献   

9.
A single atom strongly coupled to a cavity mode is stored by three-dimensional confinement in blue-detuned cavity modes of different longitudinal and transverse order. The vanishing light intensity at the trap center reduces the light shift of all atomic energy levels. This is exploited to detect a single atom by means of a dispersive measurement with 95% confidence in 10 micros, limited by the photon-detection efficiency. As the atom switches resonant cavity transmission into cavity reflection, the atom can be detected while scattering about one photon.  相似文献   

10.
A new pinhole-plate ultrasonic atomizer has been proposed and developed. A pinhole-plate having one or more pinholes is joined to a cavity filled with liquid and is vibrated by a circular ring piezoelectric element bonded onto it. The vibrating plate generates ultrasonic waves only in the vicinity of the pinholes to jet and atomize the liquid from them. The atomizer is very simple and compact, and extremely low in power consumption.  相似文献   

11.
Maes CF  Wright EM 《Optics letters》2004,29(3):229-231
We analyze the mode properties of a laser with a Gaussian gain profile by using the beam propagation method. The resonance properties of the Petermann K factor and the M2 beam quality are shown to be related in the vicinity of degenerate cavity geometries. K is unity for a confocal cavity, even under conditions with strong gain guiding, while M2 is a maximum.  相似文献   

12.
We investigate the quantum fluctuations of a single atom in a weakly driven cavity, where the center of mass motion of the atom is quantized in one dimension. We present analytic results for the second order intensity correlation function g((2))(tau) and the intensity-field correlation function h(theta)(tau), for transmitted light in the weak driving field limit. We find that the coupling of the center of mass motion to the intracavity field mode can be deleterious to nonclassical effects in photon statistics and field-intensity correlations, and compare the use of trapped atoms in a cavity to atomic beams.  相似文献   

13.
We have examined analytically the behavior of an electromagnetic field in a cavity of one of two metal mirrors that is stationary, while the other mirror oscillates in the vicinity of its equilibrium position. The case in which the period of the mirror oscillations substantially exceeds the characteristic roundtrip time of the electromagnetic radiation in the cavity has been considered. To solve the problem, we have applied the method of two time scales. The method makes it possible to solve the problem by using the expansion with respect to a small parameter, for which the ratio of the cavity roundtrip time to the mirror-oscillation period is used. The solution to the problem in the zeroth-order approximation with respect to the small parameter has been obtained and examined. This solution has been shown to be correct up to the mirror-oscillation amplitude being on the order of the average cavity length. We have showed that this scheme can be used to gain and generate electromagnetic radiation. We have compared our results obtained for the oscillating mirror with the results of an exact solution of the problem when the mirror moves uniformly and rectilinearly. We have showed that, in these two cases, a change in the total field energy in the cavity is inversely proportional to the current value of the cavity length.  相似文献   

14.
We present the results of measurements and model calculations of the polarization characteristics of ULF–ELF fields in the Earth – ionosphere cavity. It is shown that the horizontal magnetic field in the cavity is elliptically polarized. The ellipticity sign remains constant in the vicinity of the first Schumann resonance. This is explained by the fact that the first resonance frequency splits into a triplet, and one side-band wave of this triplet plays the dominant role in the radio-wave propagation. It is also shown that occasional degeneracy may occur in the cavity within the framework of the hedgehog model of the geomagnetic field.  相似文献   

15.
赵彦辉  钱琛江  唐静  孙悦  彭凯  许秀来 《物理学报》2016,65(13):134206-134206
光子晶体微腔和量子点的集成是实现量子信息处理非常具有潜力的平台之一,利用微腔和量子点的耦合可以制备纠缠光子对,实现对量子态的操控.因为光子晶体微腔具有品质因子高、模场体积小等优点,可以极大地增强光与物质之间的相互作用,从而易于实现量子态在不同物理体系之间的转换.通过单量子点和光子晶体H1微腔的耦合可以产生纠缠光子对,因为H1微腔具有简并的、模式偏振正交的基态模式.通常微腔模式的激发随着量子点在微腔中的位置变化而改变,本文用时域有限差分方法研究了偶极子光源的位置及偏振对激发光子晶体H1微腔模式的影响.结果表明:通过改变偶极子光源位置可以选择性地激发H1微腔简并模式中的一个;具有某一偏振的偶极子光源只能激发相应偏振的微腔模式;模式激发强度的大小也是由偶极子光源在微腔中的位置决定的.鉴于目前量子点在微腔中的位置尚不能精确控制,所以微腔模式受激发光源位置的影响的研究具有重要意义.  相似文献   

16.
Wenyuan Rao 《Optik》2010,121(21):1934-1936
We present a design of all-optical switches based on one-dimensional photonic crystals (1D PhC) doped with nonlinear optical materials. The 1D PhC switch structure is composed of a PhC cavity sandwiched by two accessional PhC microcavities. The center PhC cavity has two resonant frequencies with nearly the same quality factors (Q), while the accessional PhC cavities have the same resonant frequency, which is equal to one of the resonant frequencies of the center cavity. The two accessional PhC cavities cause reduction of Q value in this resonant frequency and result in different Q values of two modes. We realize all-optical switch effect by selecting pump light wavelength at the low Q mode and probe light wavelength at the other mode. The theoretical simulations by using the finite difference time domain method show that the pump light intensity required to realize optical switch effect in the designed switch is 50 times smaller than that in one-dimensional photonic crystals cavity with only one resonant mode.  相似文献   

17.
We study the low temperature physics of an ultracold atomic gas in the potential formed inside a pumped optical resonator. Here, the height of the cavity potential, and hence the quantum state of the gas, depends not only on the pump parameters, but also on the atomic density through a dynamical ac-Stark shift of the cavity resonance. We derive the Bose-Hubbard model in one dimension and use the strong coupling expansion to determine the parameter regime in which the system is in the Mott-insulator state. We predict the existence of overlapping, competing Mott-insulator states, and bistable behavior in the vicinity of the shifted cavity resonance, controlled by the pump parameters. Outside these parameter regions, the state of the system is in most cases superfluid.  相似文献   

18.
We study the quantum dynamics of N coherently driven two-level atoms coupled to an optical resonator. In the strong coupling regime the cavity field generated by atomic scattering interferes destructively with the pump on the atoms. This suppresses atomic excitation and even for strong driving fields prevents atomic saturation, while the stationary intracavity field amplitude is almost independent of the atom number. The magnitude of the interference effect depends on the detuning between laser and cavity field and on the relative atomic positions and is strongest for a wavelength spaced lattice of atoms placed at the antinodes of the cavity mode. In this case three dimensional intensity minima are created in the vicinity of each atom. In this regime spontaneous emission is suppressed and the dominant loss channel is cavity decay. Even for a cavity linewidth larger than the atomic natural width, one regains strong interference through the cooperative action of a sufficiently large number of atoms. These results give a new key to understand recent experiments on collective cavity cooling and may allow to implement fast tailored atom-atom interactions as well as nonperturbative particle detection with very small energy transfer.Received: 18 May 2004, Published online: 19 October 2004PACS: 32.80.Pj Optical cooling of atoms; trapping - 42.50.Pq Cavity quantum electrodynamics; micromasers - 42.50.Fx Cooperative phenomena in quantum optical systems  相似文献   

19.
Zhang H  Tang DY  Zhao LM  Tam HY 《Optics letters》2008,33(20):2317-2319
We report on the experimental observation of induced solitons in a passively mode-locked fiber ring laser with a birefringence cavity. Owing to the cross coupling between the two orthogonal polarization components of the laser, it was found that if a soliton was formed along one cavity polarization axis, a weak soliton was also induced along the orthogonal polarization axis, and depending on the net cavity birefringence, the induced soliton could have either the same or different center wavelengths to that of the inducing soliton. Moreover, the induced soliton always had the same group velocity as that of the inducing soliton. They formed a vector soliton in the cavity. Numerical simulations confirmed the experimental observations.  相似文献   

20.
 介绍了确定不同加速间隙形状和设计结构的强流直线感应加速腔微波特性的方法,即确定频域中加速腔横向阻抗值的方法,包括数值模拟和实验测试。 横向阻抗测试实验中采用了两种测试方法:一种为同轴线束流模拟法,另一种为对加速腔形状因子的测试。实验中测试了3种不同的腔型,并和数值模拟结果进行了比较。两种横向阻抗的测试方法所得结果都与计算结果基本符合,从测试过程的繁简程度和多次实验结果的重复性来看,对于强流直线感应加速腔来说,形状因子值测试方法优于双芯同轴线束流模拟法。实验测试和数值模拟结果显示,确定直线感应加速腔横向阻抗值,测试实验和数值模拟是相辅相成的,缺一不可。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号