首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Considering two two-level atoms initially in Bell state, we send one atom into a vacuum cavity while leaving the other outside, and consider the motion of atom inside the cavity. Using quantum information entropy squeezing theory, the time evolution of the entropy squeezing factor of atom inside the cavity is discussed for two cases, i.e., before and after performing rotation operations and measuring atom outside, the influences of the field mode structure and atomic motions on the atomic entropy squeezing are evaluated. It is shown that atom inside the cavity has no entropy squeezing phenomenon before operating atom outside the cavity. However, the optimal entropy squeezing phenomenon of period T = 2π/p emerges and constant entropy squeezing phenomenon can occur by adjusting rotation operation to R(π/4), and setting the field mode structure parameter 0 < p < 50. In particular, if choosing p > 50, a sustained optimal entropy squeezing state (SOESS) can be generated. We also present the schematic circuit diagram of preparation of SOESS. Our proposal provides a possible way for the initial decoherent state recovering into sustained maximal coherent superposition state of single atom in the quantum noise environment.  相似文献   

2.
The theory of the dynamic interaction of the external (translational) and internal (electronic) degrees of freedom of a twolevel atom in the field of a standing light wave in a perfect cavity of the Fabry–Perot type was developed. The theory describes the energy exchange between three subsystems, namely, translational, electronic, and field subsystems, as opposed to the theories of the parametric interaction (in the approximations of Raman–Nath and/or large resonance detuning) and of the atomic motion in free space. In the semiclassical approximation, the corresponding Heisenberg equations of motion were shown to form a closed Hamiltonian dynamic system with two degrees of freedom, namely, translational and collective electron–field degrees of freedom. This system is integrated in terms of the elliptic Jacobian functions in the resonance limit. The solutions obtained describe the effects of trapping of an atom in the periodic potential of the standing light wave, and its cooling and heating, as well as the effect of the dynamic Rabi oscillations. The latter is caused by the interaction of the internal and external atomic degrees of freedom through the radiation field.  相似文献   

3.
We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features such as photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures.  相似文献   

4.
5.
In this paper, we investigate the entanglement dynamics anddecoherence in the interacting system of a strongly driventwo-level atom and a single mode vacuum field in the presence ofdissipation for the cavity field. Starting with an initial productstate with the atom in a general pure state and the field in avacuum state, we show that the final density matrix is supportedon \({\mathbb C}^2\otimes{\mathbb C}^2\) space, and therefore, theconcurrence can be used as a measure of entanglement between theatom and the field. The influences of the cavity decay on thequantum entanglement of the system are also discussed. We alsoexamine the Bell-CHSH violation between the atom and the field andshow that there are entangled states for which the Bell-BCSHinequality is not violated. Using the above system as a quantumchannel, we also investigate the quantum teleportation of ageneric qubit state and also a two-qubit entangled state, and showthat in both cases the atom-field entangled state can be useful toteleport an unknown state with fidelity better than any classicalchannel.  相似文献   

6.
We investigate the quantum fluctuations of a single atom in a weakly driven cavity, where the center of mass motion of the atom is quantized in one dimension. We present analytic results for the second order intensity correlation function g((2))(tau) and the intensity-field correlation function h(theta)(tau), for transmitted light in the weak driving field limit. We find that the coupling of the center of mass motion to the intracavity field mode can be deleterious to nonclassical effects in photon statistics and field-intensity correlations, and compare the use of trapped atoms in a cavity to atomic beams.  相似文献   

7.
远程控制光场的量子统计性质   总被引:3,自引:0,他引:3  
周原  张英杰  夏云杰 《光学学报》2007,27(6):122-1128
考虑双模纠缠相干光场,将其中一束光场注入腔中与一个二能级原子发生共振相互作用,总系统在腔量子电动力学演化过程中,对原子作选择性的测量,通过操纵参加相互作用的时间以及选择适当的光场参量可控制未参加相互作用光场的量子统计性质,在一定条件下可产生反聚束、压缩态等非经典光场,并且通过适当的控制和调整这些参量可以改变未参加相互作用光场的反聚束和压缩特性的强弱。这样,通过利用腔与原子之间简单的共振相互作用和相干光场之间的纠缠关联,实现了远程的、无直接量子测量的控制或改变相干光场的非经典性质这一目的。  相似文献   

8.
A single atom strongly coupled to a cavity mode is stored by three-dimensional confinement in blue-detuned cavity modes of different longitudinal and transverse order. The vanishing light intensity at the trap center reduces the light shift of all atomic energy levels. This is exploited to detect a single atom by means of a dispersive measurement with 95% confidence in 10 micros, limited by the photon-detection efficiency. As the atom switches resonant cavity transmission into cavity reflection, the atom can be detected while scattering about one photon.  相似文献   

9.
A two-photon Fock state is prepared in a cavity sustaining a "source mode" and a "target mode," with a single circular Rydberg atom. In a third-order Raman process, the atom emits a photon in the target while scattering one photon from the source into the target. The final two-photon state is probed by measuring by Ramsey interferometry the cavity light shifts induced by the target field on the same atom. Extensions to other multiphoton processes and to a new type of micromaser are briefly discussed.  相似文献   

10.
卢道明 《光学技术》2011,37(1):66-70
考虑将初始处于纠缠态的一个原子注入处于Fock态的单模腔中,并且原子与光场发生共振相互作用的情况,采用Negativity熵来描述两子系统间的纠缠,运用数值计算方法研究了腔内原子与光场间的纠缠特性.通过是否进行原子态选择性测量情况下,对腔内原子与光场间的纠缠特性的比较,讨论了腔外原子的测量对纠缠特性的影响.研究结果表明...  相似文献   

11.
An efficient atomic-beam splitter on the basis of interaction of the wave packet of a three-level atom with the field of standing light waves having the relative spatial shift ? = π/2 is studied. It is shown that, when several zones of interaction with the field of optical radiation are used, a splitting equal to 2n?k(n is the number of zones of interaction) in each of the lower states of the three-level Λ atom can be reached.  相似文献   

12.
We theoretically investigate the correlated dynamics of N coherently driven atoms coupled to a standing-wave cavity mode. For red detuning between the driving field and the cavity as well as the atomic resonance frequencies, we predict a light force induced self-organization of the atoms into one of two possible regular patterns, which maximize the cooperative scattering of light into the cavity field. Kinetic energy is extracted from the atoms by superradiant light scattering to reach a final kinetic energy related to the cavity linewidth. The self-organization starts only above a threshold of the pump strength and atom number. We find a quadratic dependence of the cavity mode intensity on the atom number, which demonstrates the cooperative effect.  相似文献   

13.
In this article a treatment of a three-level atom interacting with two modes of light in a cavity with arbitrary forms of nonlinearities of both the fields and the intensity-dependent atom-field coupling is presented. A factorization of the initial density operator is assumed, with the privileged field modes being in a pair-coherent state. We derive and illustrate an exact expression for the time evolution of the density operator, by means of which we identify and numerically demonstrate the region of parameters where significantly large entanglement can be obtained. We show that entanglement can be significantly influenced by different kinds of nonlinearities. The nonlinear medium yields the superstructure of atomic Rabi oscillation. We propose a generation of Bell-type states having a simple initial state preparation of the present system. Received 29 July 2002 / Received in final form 18 October 2002 Published online 21 January 2003 RID="a" ID="a"e-mail: abdelaty@uni-flensburg.dePresent address: Institut für Mathematik, Universit?t Flensburg, Germany.  相似文献   

14.
The Jaynes-Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an nn-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes-Cummings model based on expanding the state vector in terms of products of atomic and nn-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects.  相似文献   

15.
The position of a slow atom passing through a standing-wave light field in an ultrahigh-finesse optical resonator can be measured by observing either the intensity of the light transmitted through the cavity or its phase. Apart from the periodicity of the standing wave, both techniques allow to determine the position of the particle with a resolution much better than the standard classical diffraction limit /2. Position measurements with uncertainty </20 seem to be possible with all-optical techniques.These notes were prepared to celebrate H. Walther's 60th birthday and to honour his pioneering contributions to some of the most lively fields of quantum optics  相似文献   

16.
卢道明 《中国物理 B》2011,20(3):30301-030301
Considering three two-level atoms initially in the W or Greenberger--Horne--Zeilinger (GHZ) state, one of the three atoms is put into an initially coherent light cavity and made to resonantly interact with the cavity. The two-atom entanglement evolution outside the cavity is investigated. The influences of state-selective measurement of the atom inside the cavity and strength of the light field on the two-atom entanglement evolution outside the cavity are discussed. The results obtained from the numerical method show that the two-atom entanglement outside the cavity is strengthened through state-selective measurement of the atom inside the cavity. In addition, the strength of the light field also influences the two-atom entanglement properties.  相似文献   

17.
18.
张立辉  李高翔 《光子学报》2014,40(4):607-612
采用全量子理论方法,研究了处于耗散腔中的双原子与单模相干光场相互作用系统,分析了双原子与光场之间以及两原子之间的纠缠演化特性,讨论了腔场的衰减以及原子与光场间的失谐量对双原子与光场之间以及两原子之间纠缠演化特性的影响.结果表明,当腔场存在损耗时,原子与光场之间可出现纠缠,但在长时极限下,纠缠逐渐消灭|而失谐量对原子与光场间的纠缠存在着显著影响|初始处于最大纠缠的两原子之间的纠缠,由于光场的衰变而逐渐减弱,但原子-光场之间的失谐可抑制这一衰减.  相似文献   

19.
A quantum system consisting of a two-level atom interacting with a single field mode of a high-Qcavity under influence of a coherent pump is considered. The analytical solutions for the P and Q distribution functions are obtained in the limit of large Rabi frequencies. In the presence of thermal photons, the P distribution function loses its property of restriction by the range on the complex plane and becomes an analytical function. When the ratio of the atomic decay rate to the cavity mode damping rate is smaller than 4, the effect of phase bistability appears. Absorptive optical bistability is absent in this case. On the basis of the system of Fokker-Planck equations for the quasi-probabilities corresponding to the atom being on the upper and lower atomic levels, computer simulation of the stochastic trajectory of motion for the system is presented.  相似文献   

20.
The kinetics of atoms with degenerate energy levels in the field produced by elliptically polarized waves is considered in the semiclassical approximation. Analytic expressions for the force acting on an atom and for the diffusion coefficient in the momentum space are derived for the optical transition J g =1/2→J e = 1/2 in the slow atom approximation. These expressions are valid for an arbitrary one-dimensional configuration of the light field and for an arbitrary intensity. The peculiarities of the atomic kinetics are investigated in detail; these peculiarities are associated with ellipticity of light waves and are absent in particular configurations formed by circularly or linearly polarized waves, which were considered earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号