首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
We present a picosecond laser system with high energy by technologies of cavity dumping and amplifying. Firstly, pulses with 10 ps and ~520 nJ were obtained by cavity-dumped mode-locked laser at 10 kHz repetition rate. Secondly those pulses were seeded into a side-pumped regenerative amplifier (RA). Then pulses output from the regenerative amplifier were amplified by two four-pass post amplifiers. From the laser system pulses with an average power of 30 W corresponding to 3 mJ pulse energy were achieved with the pulse-width of 25.4 ps at repetition rate of 10 kHz.  相似文献   

2.
A pulsed master oscillator fiber power amplifier working in nanosecond range has been developed. An ytterbium-doped double-clad (large mode area) optical fiber was used as an amplifying medium. Actively Q-switched Nd:YVO laser was used as a seed of light pulses. The system worked at the repetition rate from 10 kHz to 40 kHz. At the amplifier output, pulses of 10.9 kW peak-power were achieved. The laser system worked at the slope efficiency of 30%.  相似文献   

3.
报道了半导体激光器端面抽运不同结构的声光调Q的双包层光纤激光器的脉冲输出特性. 对前向、后向不同抽运方式的掺镱调Q双包层光纤激光器在输出平均功率,调Q脉冲宽度及脉冲稳定性进行了对比及讨论;其中后向抽运的光纤激光器,在10kHz重复频率调制下,获得了斜效率为60%的平均功率输出,其脉冲宽度为52ns,单脉冲能量为03mJ. 最后利用不同抽运方式下的速率方程,理论分析调Q脉冲的特性,分析结果与实验相符. 关键词: 双包层光纤激光器 声光开关 前向抽运 后向抽运  相似文献   

4.
A single-axial-mode, passively Q-switched (PQS) diode-pumped Nd:YAG laser, generating a diffraction-limited beam train of ≈40–60 μJ, ∼500-ps pulses with adjustable repetition rate in the range 1–10 kHz, was efficiently amplified by a single side-pumped Nd:YVO4 bounce amplifier. After double-pass amplification, ≈1-MW pulse peak power with 577-ps duration and 545-μJ energy was achieved, still maintaining diffraction-limited beam performance. The average output power was 5.45 W at 10 kHz, corresponding to 13% extraction efficiency. The high brightness of this laser system seems ideal for nonlinear optics and some particular laser processing applications.  相似文献   

5.
This Letter presents results from a new master-oscillator, power-amplifier pulse-burst laser system demonstrating ultrahigh pulse energies greater than 2.0 J/pulse at 1064?nm with interpulse separations of 100?μs (10?kHz) for burst durations of 100 pulses. Each pulse generates peak powers exceeding 130?MW and an average power of approximately 20?kW is generated over a 100-pulse-burst. Pulse energies decrease by less than 10% over a 100 sequential pulses, demonstrating negligible "droop" over long-duration pulse trains. Second-harmonic generation of 532?nm with conversion efficiency greater than 50% is demonstrated for 100-pulse-burst durations.  相似文献   

6.
We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.05 W, corresponding to a slope efficiency of 74.6%. The ZGP-OPO laser produces 4.2 ns mid-infrared pulses at a pulse repetition rate of 5 kHz. In addition, we obtain 0.8 um of tunable range for the signal wave and 2.1 um of tunable range for the idler wave.  相似文献   

7.
We report on the operation and performance of a gain-switched Er:ZBLAN fiber laser based on an active pulsed diode pump system. The produced laser pulses offer high peak powers while retaining the high average powers and efficiency of the cw regime. The measured pulse duration was about 300 ns and nearly independent of the pump repetition frequency. The maximum obtained 68 W of peak power is the highest reported, to our knowledge, for diode-pumped Er:ZBLAN fiber lasers, and the 2 W of average power at the repetition frequency of 100 kHz is 2 orders of magnitude higher than previously reported average power in a pulsed regime. The obtained slope efficiency was 34%.  相似文献   

8.
A diode-pumped high-repetition-rate acousto-optically (A-O) Q-switched Nd:YVO4 laser operating at 914 nm was reported in this paper. Employing a compact linear laser cavity, at an operating repetition rate of 10 kHz, a maximum average output power of 2.2 W 914 nm laser was obtained at an incident pump power of 45.3 W, corresponding to an optical conversion efficiency of 4.9% and a slope efficiency of 8.8%. Minimum pulse width of 24 ns and maximum peak power of 8.0 kW of 914 nm laser was also achieved at an incident pump power of 40.8 W. To the best of our knowledge, this is the highest peak power of 914 nm laser at 10 kHz by far. Moreover, the highest operating repetition rate of pulsed 914 nm can even reach 100 kHz.  相似文献   

9.
A diode-end-pumped high repetition rate, high peak power acousto-optical (AO) Q-switched 946 nm Nd:YAG laser was demonstrated in this paper. In our experiments, a 20 mm miniature acousto-optical Q-switch was employed in a 45 mm linear laser cavity for generating the short laser pulse. At a repetition rate of 10 kHz, a maximum average output power of 2.9 W was achieved with a pulse width of 24.4 ns, giving a peak power of 11.9 kW. To the best of our knowledge, this is the highest peak power 946 nm Nd:YAG laser at high repetition rate operation. Moreover, pulse train with good stability was also obtained at the repetition rate of 50 kHz. At an incident pump power of 22.3 W, up to an average output power of 3.5 W pulsed 946 nm laser was generated at 50 kHz with a pulse width of 69 ns, corresponding to an optical conversion efficiency of 15.7% and an average slope efficiency of 24.1%, respectively.  相似文献   

10.
A diode-pumped acousto-optically (AO) Q-switched high-repetition-rate Nd:YAG lasers at 946 and 473 nm by intracavity frequency-doubling were reported in this paper. Using a compact V-type laser cavity, a maximum average output power of 4.5 W 946 nm laser was obtained at an operating repetition rate of 10 kHz, corresponding to an optical conversion efficiency of 10.5% and a slope efficiency of 15.6%. With a BiBO crystal as the intracavity frequency-doubler, 1.35 W 473 nm pulsed laser was achieved at 10 kHz. The peak power of the Q-switched blue pulse was up to 4.1 kW, with a pulse width of 33.1 ns. Then, the long-term power instability was less than 1%. Moreover, stable pulsed operation of 946 nm and 473 nm lasers can even reach 50 kHz.  相似文献   

11.
We have demonstrated passively Q-switched mode-locked all-solid-state Nd:YLF laser with an uncoated GaAs wafer as saturable absorber and output mirror simultaneously. Q-switched mode-locking pulses laser with about 100% modulation depth were obtained. The average output power is 890 mW at the incident pump power of 5.76 W, corresponding to an optical slop efficiency of 20%. The temporal duration of mode-locked pulses was about 21 ps. At the Q-switched repetition rate of 30 kHz, the energy and peak power of a single pulse near the maximum of the Q-switched envelope was estimated to be about 1.6 μJ and 76 kW.  相似文献   

12.
Liu J  Tian X  Zhou Z  Wu K  Han W  Zhang H 《Optics letters》2012,37(12):2388-2390
Efficient laser operation is demonstrated at room temperature with a new Yb:Lu3Ga5O12 garnet crystal. A continuous-wave output power of 5.36 W is generated at a center oscillation wavelength of 1041 nm, with an optical-to-optical efficiency of 51% and the slope efficiency of 63%. In passively Q-switched operation, the maximum average output power reaches 4.0 W (center wavelength of 1034 nm) at a repetition rate of 71 kHz, with optical-to-optical and slope efficiencies measured to be 40% and 50%, respectively. Laser pulses of 26 ns duration are generated with a pulse energy of 91 μJ and peak power of 3.5 kW.  相似文献   

13.
High-conversion-efficiency and tunable self-phase-stabilized infrared laser pulses have been generated from a two-stage optical parametric amplifier. With a 1 kHz repetition rate 800 nm pump source, the output idler pulses are tunable from 1.2 to 2.4 μm, and the maximum output average power of the idler pulses is >2 W with the total 7.4 W pump power, and the maximum parametric conversion efficiency in the final optical parametric amplifier is near 60%. Due to the differential frequency process, the output idler pulses is self-phase-stabilized, the phase fluctuation can reach 0.374 rad (rms).  相似文献   

14.
Liu  J.  Ozygus  B.  Erhard  J.  Ding  A.  Weber  H.  Meng  X. 《Optical and Quantum Electronics》2003,35(8):811-824
A diode-pumped 1.34 m Nd:GdVO4 laser operating in cw and active Q-switching modes has been demonstrated. 4.15 W of cw output power was obtained at the highest attainable pump power of 12.3 W, resulting in an optical conversion efficiency of 33.7%, the slope efficiency was determined to be 37.6%. In Q-switching operation, a maximum average output power of 2.7 W was generated at pulse repetition frequency (PRF) of 50 kHz, with an optical conversion efficiency of 22% and a slope efficiency of 29.2%. The laser pulses with shortest duration, highest energy and peak power were achieved at PRF of 10 kHz, the parameters being 15 ns, 160 J, and 10.7 kW, respectively. By intracavity frequency-doubling with a type II phased-matched KTP crystal, 0.62 W average power at 0.67 m was produced at a PRF of 15 kHz, the resulting pulse energy, peak power, and pulse width being 41.3 J, 2.2 kW, and 19 ns, respectively. A group of analytical formulae, based on rate equations, are presented to evaluate the operational parameters of an actively Q-switched laser. Calculated results were found to be in close consistency with the experimental data.  相似文献   

15.
A high-peak-power and high-repetition-rate fiber laser architecture is successfully demonstrated using a single-stage fiber amplifier. Nonlinear optical effects in a fiber amplifier degrade the monochromaticity of amplified laser pulses. In general, it is difficult for a non-monochromatic laser pulse to realize high-order harmonic generation with bulk nonlinear optical crystals. To overcome this problem, a single-stage amplifier architecture and a gain fiber with a high cladding absorption coefficient are employed. Furthermore, single-stage amplification enables the use of a multi-longitudinal mode electro-optically (EO) Q-switched micro seed laser. This architecture can generate a peak power of 100 kW at 50 kHz and an average power of 10 W. A second-harmonic conversion efficiency of 51% is obtained using this architecture and a LiB3O5 (LBO) crystal.  相似文献   

16.
H. Ge  S. Zhao  Y. Li  G. Li  D. Li  K. Yang  M. Li  G. Zhang  K. Cheng  Z. Yu 《Laser Physics》2009,19(6):1226-1229
We present a compact passively Q-switched mode-locked Nd:LuVO4 laser run in a Z-type folded cavity with semiconductor saturable absorber mirror (SESAM). The repetition rates of the passively Q-switched pulse envelope ranges from 22.99 to 141.18 kHz as the pump power increased from 2.372 to 8.960 W. The repetition rates of mode-locked laser pulses in the Q-switched pulse envelope has 111 MHz determined by the cavity length and the mode-locked pulse duration is evaluated to be 257 ps. An average output power of 823.5 mW is achieved at the pump power of 8.96 W, corresponding to an optical conversion efficiency of 9.2%.  相似文献   

17.
A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr:YAG laser is demonstrated for the first time. In a concave-piano cavity, pulsed 912 nm laser performance is investigated using two kinds of Cr:YAG crystal with different unsaturated transmission (T U) of 95% and 90% at 912 nm as the saturable absorbers. When the T U = 90% Cr:YAG is used, as much as 2.6 W average output power for short pulsed 912 nm laser is achieved at an absorbed pump power of 34.0 W, corresponding to an optical efficiency of 7.6% and a slope efficiency of 20.3%. Moreover, 10.5 ns duration pulses and up to 2.3 kW peak power is obtained at the repetition rate around 81.6 kHz.  相似文献   

18.
Chen YF 《Optics letters》1999,24(15):1032-1034
A compact and efficient diode-pumped acousto-optically Q -switched intracavity frequency-doubled Nd:Y VO(4)/KTP green laser is demonstrated. With 0.5-at. % Nd:Y VO(4), greater than 4.6 W of 532-nm average power at a repetition rate of 50 kHz was generated with 17-W pump power, corresponding to a conversion efficiency of 27%. At 10-30 kHz the pulse width is shorter than 10 ns, and the peak power is higher than 13 kW.  相似文献   

19.
A simultaneous self-Q-switched and mode-locked diode-pumped 946 nm laser by using a Cr,Nd:YAG crystal as gain medium as well as saturable absorber is demonstrated for the first time as we know. The maximum average output power of 751 mW with a slope efficiency of 18.38% is obtained at an intra-cavity average peak power intensity of 4.83 × 106 W/cm2. Under this circumstance, the repetition rate of Q-switched envelopes is 9.63 kHz and the pulse width is about 460 ns. Almost 100% mode-locked modulation depth is obtained at all time in the experiment process whether the incident pump power is low or high. The repetition rate of mode-locked pulses within a Q-switched envelope is 135.13 MHz and the mode-locked pulse width is within 600 ps. The laser produces high-quality pulses in TEM00-mode in the simultaneous self-Q-switched and mode-locked experiment.  相似文献   

20.
We report the generation of mid-infrared pulsed radiation between 2.2 and 3 μm range using a singly-resonant optical parametric oscillator (SR-OPO) based on a 40-mm-long crystal of periodically-poled LiNbO3 (PPLN) pumped by mechanically Q-switched pulses from a Nd:YAG laser, obtained by chopping the beam inside the laser resonator over a 1–10 kHz duty cycle. An appreciable reduction in pulse width as well as the number of relaxation oscillation pulses of the Nd:YAG pump laser is observed when the frequency of the Q-switch chopper is increased up to 10 kHz. Sub-nanosecond relaxation oscillation pulses of about 170–210 ns duration are generated under the width of the idler envelope varying from 4.6 to 8.55 μs. The same behavior is observed for the signal wave. A maximum extraction efficiency of 22 % is obtained for the idler, corresponding to 785 mW of output power at 10 kHz. The tuning of the signal and idler beams were performed by temperature variation of the PPLN crystal within 100–200 °C range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号