首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
蛋白石型光子晶体红外隐身材料的制备   总被引:2,自引:0,他引:2       下载免费PDF全文
基于光子晶体的红外隐身材料,主要采取一维层层堆叠结构和三维木堆结构等来实现对红外波段电磁波辐射性能的调控.本文报道了一种操作简易、成本低廉的光子晶体红外隐身材料制备方法.通过优化的垂直沉积法,微米级SiO_2胶体微球自组装成高质量的蛋白石型光子晶体结构.对SiO_2胶体微球进行优选,成功制备了禁带位于2.8—3.5μm,8.0—10.0μm的SiO_2胶体晶体蛋白石型光子晶体材料.该材料可改变目标相应波段的红外辐射特征,具有目标红外波段的隐身效果.  相似文献   

2.
高质量三维光子晶体的制备及其透射谱研究   总被引:3,自引:2,他引:1  
刘桂强  廖昱博  刘忠民 《光学学报》2008,28(12):2400-2403
设计了简易的压强可控自组装实验装置,制备了由直径为260 nm的聚苯乙烯(PS)胶体球组成的面心立方光子晶体.分析了压强的变化对光子禁带(PBG)深度及光子带隙边缘(PBE)坡度的影响,确定了合适的压强生长环境(P=5999.5 Pa).利用该实验装置,还进行了光子晶体的小批量制备,一次性制得了三块光子晶体,并从不同角度对每一块光子晶体的透射谱及不同光子晶体的透射谱进行了测量.同一光子晶体不同位置透射谱的重合、同一批次制备的不同光子晶体透射谱的一致性及光子禁带两侧的Fabry-Pérot振荡等均说明:该装置制备的光子晶体在大区域、大面积上是高度有序、均一和平整的;利用该实验装置进行光子晶体的小批量制备是可行的.  相似文献   

3.
陈威  王鸣  倪海彬 《物理学报》2013,62(11):114207-114207
研究了在圆柱曲面基底上自组装空心和实心的圆柱形蛋白石和反蛋白石结构光子晶体的方法. 用垂直沉积法在不同曲率半径的毛细管内自组装了空心圆柱形聚苯乙烯(PS)蛋白石结构光子晶体薄膜和二氧化硅 (SiO2) 反蛋白石结构薄膜; 用类重力沉积法制得实心圆柱形蛋白石和反蛋白石结构光子晶体, 并讨论了这一生长方式中的状态变化过程及影响因素. 用扫描电子显微镜对样品内部结构进行了表征, 用光谱仪测试了光子晶体薄膜的反射光谱, 结果表明: 基底曲率半径和微球粒径的大小是影响空心蛋白石和反蛋白石薄膜质量的主要因素; 微球大小是影响实心结构有序性的主要因素. 关键词: 反蛋白石 空心圆柱 溶胶凝胶协同自组装  相似文献   

4.
共轭荧光分子光子晶体发光材料的可控制备与性能研究   总被引:1,自引:0,他引:1  
利用自组装技术结合溶胶-凝胶法成功制备了高度有序且光子带隙可控的聚甲基丙烯酸甲酯蛋白石光子晶体样品,并对其表面形貌、透射光谱和发射光谱进行了表征,研究了光子带隙与微球直径、带隙位置与入射光角度之间的依赖关系。  相似文献   

5.
用改进的种子法合成SiO2微球. 微球生长过程中连续缓慢添加正硅酸乙酯,使用动态光散射法实时监控微球粒径的增长过程,调节正硅酸乙酯的添加,实现对粒径的精确控制. 为制备禁带位置位于1000 nm 的光子晶体,合成粒径为446 nm的SiO2微球,微球粒径在4 h内从193 nm 增长到446 nm,远远快于传统种子法,微球粒径与目标粒径偏差为±5 nm. 制得的SiO2微球被组装为光子晶体,其禁带位置恰好位于1000 nm.  相似文献   

6.
采用直径为700nm的二氧化硅微球,通过垂直沉积法在玻璃基片上制备了位于光通讯波段的禁带胶体光子晶体。研究了不同蒸发温度、湿度条件、干燥过程对样品晶体质量的影响。用扫描电子显微镜(SEM)对其形貌进行了观测。实验结果表明,在温度为65℃,相对湿度为70%,缓慢干燥条件下制备出的样品具有较好的晶体质量,晶体在大范围内保持了面心立方(FCC)单晶结构,其(111)面平行于生长基片。  相似文献   

7.
利用自组装方法在普通单模光纤裸纤表面生长胶体晶体,采用自组装方法制备了一种新型的三维光子晶体微结构光纤。将单分散度小于2%的二氧化硅胶体微球超声分散于乙醇溶液,通过垂直沉积法在表面经湿法腐蚀处理的裸光纤表面组装胶体晶体。采用SEM对样品进行表征,胶体样品表面为六角密排列,晶体呈FCC结构,其(111)晶面平行于光纤表面。当微球直径远小于光纤直径时,在60℃温度下制备的胶体样品有较好的质量。  相似文献   

8.
采用溶剂蒸发对流自组装法将单分散SiO2微球组装形成三维有序胶体晶体模板,用低压化学气相沉积法填充高折射率材料锗,酸洗去除SiO2模板,获得了锗反蛋白石三维光子晶体.通过扫描电镜、X射线衍射仪和紫外-可见-近红外光谱仪对锗反蛋白石的形貌、成分、结构和光学性能进行了表征.结果表明:锗在SiO2微球空隙内具有较高的结晶质量,填充致密均匀.通过改变沉积工艺,可控制锗的填充率;制备的锗反蛋白三维光子晶体具有明显的光学反射峰,表现出光学带隙效应.测试的光学性能与理论计算基本吻合.  相似文献   

9.
采用溶剂蒸发对流自组装法将单分散SiO2微球组装形成三维有序胶体晶体模板,用低压化学气相沉积法填充高折射率材料锗,酸洗去除SiO2模板,获得了锗反蛋白石三维光子晶体.通过扫描电镜、X射线衍射仪和紫外-可见-近红外光谱仪对锗反蛋白石的形貌、成分、结构和光学性能进行了表征.结果表明:锗在SiO2微球空隙内具有较高的结晶质量,填充致密均匀.通过改变沉积工艺,可控制锗的填充率;制备的锗反蛋白三维光子晶体具有明显的光学反射峰,表现出光学带隙效应.测试的光学性能与理论计算基本吻合.  相似文献   

10.
龚丽霞  刘桂强  黄宽  陈元浩  唐发林  黎磊 《光学学报》2012,32(9):916005-204
采用自组装法制备了聚苯乙烯(PS)微球三维光子晶体结构,通过在PS微球悬浮液中掺入不同浓度的二氧化硅大球,实现了光子晶体结构从有序向无序过程的转变。通过对这些样品的透射、反射进行测量和分析,发现无序效应对光子晶体的光子响应特性具有极大的影响,随着无序程度的增加,高频波段的透射率急剧下降,低频波段的法布里-珀罗振荡消失,光子带隙蓝移且逐渐消失;而在掺杂浓度为0.02%(质量分数)时,光子晶体带隙中心的最低透射率从10%下降到1%,且反射单峰随着探测角度的增大而分裂为双峰。这有助于基于介质球三维光子晶体沿Γ-L方向透射消光,促进其在新型光学器件领域的应用发展。  相似文献   

11.
The technology of fabricating photonic crystals with the use of nanoimprint lithography is described. One-and two-dimensional photonic crystals are produced by direct extrusion of polymethyl methacrylate by Si moulds obtained via interference lithography and reactive ion etching. The period of 2D photonic crystals, which present a square array of holes, ranges from 270 to 700 nm; the aperture diameter amounts to the half-period of the structure. The holes are round-shaped with even edges. One-dimensional GaAs-based photonic crystals are fabricated by reactive ion etching of GaAs to a depth of 1 μm through a mask formed using nanoimprint lithography. The resulting crystals have a period of 800 nm, a ridge width of 200 nm, and smooth nearly vertical side walls.  相似文献   

12.
姜凌红  侯蓝田  杨倩倩 《物理学报》2010,59(7):4726-4731
应用多极法比较和分析了相同结构参数下的正六边形、正八边形和正十边形光子晶体光纤的色散系数、色散斜率、非线性系数和限制损耗.正六边形光子晶体光纤更适合用于色散补偿和高非线性的研究,在波长0.8 μm处的非线性系数达到了0.37 m-1·W-1;正十边形光子晶体光纤更适合用于色散平坦和低限制损耗的研究,在波长0.8 μm处的限制损耗相对正六边形光子晶体光纤减小了约3000个数量级,在1.4—1.65 μm波长范围内,正十边形光纤的色散系数介于-0.07—0.17 p  相似文献   

13.
Photonic crystals fabricated from the colloidal spheres of polymethyl methacrylate (PMMA) using the inward-growing self-assembly technique were subsequently in-filled with zinc oxide (ZnO) prepared by the sol-gel process. The polymer template was removed by heat treatment and chemical method to get ZnO-inverse photonic crystal. The structural quality of the inverse photonic crystal obtained by the chemical method was found to be superior to that obtained by heat treatment. The ZnO-inverse photonic crystal obtained by the chemical method was further treated at an elevated temperature to ensure the crystalline nature of ZnO. Laser-induced emission studies on ZnO-inverse photonic crystals were carried out at an excitation wavelength of 325 nm. The emission spectra showing UV and visible bands at collection angle of 45° from the direction of excitation helped to establish the role of crystalline ZnO.  相似文献   

14.
高晖  孔凡敏  李康  陈新莲  丁庆安  孙静 《物理学报》2012,61(12):127807-127807
为了提升氮化镓(GaN)蓝光发光二极管(LED)光提取效率, 设计了双层光子晶体LED模型. 提出等效折射率近似方法, 简化求解了结构中的介质波导模式分布. 从而对模型中顶层光子晶体刻蚀深度d, 嵌入式光子晶体厚度T及其距有源层距离D等结构参数进行了优化. 同时利用时域有限差分方法对优化结果进行了验证. 相比其他仿真方法, 模式分析极大地减少了对LED建模优化的计算复杂度, 同时从理论上阐明了不同结构参数变化引起LED光提取效率改变的原因. 研究发现, 当顶层光子晶体满足d ≈ λ / nPhCs 时, 结构内大部分高阶导模尚未被截断但源区能量向低阶导模的转化被有效抑制, 光提取效率给出极大值. 嵌入式光子晶体的引入将激发覆盖层模式, 当满足100 nm≤ T ≤ 300 nm且100 nm≤ D ≤ 200 nm 时, 覆盖层模式可以从有源层获得较大能量并有效地与顶层光子晶体耦合, 极大地提升了光提取效率. 本文优化结果使得LED光提取效率提升了4倍, 对高性能GaN蓝光LED的设计制造具有重要意义.  相似文献   

15.
We have fabricated three-dimensional ZnO photonic crystals by the self-assembly of SiO2/ZnO core–shell microspheres of diameter 180–220 nm by means of a vertical deposition method. The organized crystals adopt a uniform close-packed hexagonal structure with long-range order and a high filling fraction. They exhibit strong partial photonic band gaps at 565–688 nm in the transmission spectrum and a broadened band edge emission at 383 nm in the photoluminescence spectrum. For comparison with these ZnO photonic crystals, we have also prepared pure silica crystals of the same dimensions. The photonic band gaps of the former have been found to be shifted to a longer wavelength by about 200 nm compared to those of the latter as a result of the higher refractive index of ZnO. This approach provides an efficient, economical alternative means of obtaining other, more complicated photonic crystals. PACS 82.70.D; 61.46.w; 61.82.Rx; 68.37.Hk  相似文献   

16.
基于自准直效应的光子晶体异质结偏振分束器   总被引:1,自引:0,他引:1       下载免费PDF全文
左依凡  李培丽  栾开智  王磊 《物理学报》2018,67(3):34204-034204
基于光子晶体的自准直效应和禁带特性,提出了一种具有非正交异质结结构的光子晶体偏振分束器.无需引入缺陷或波导,可使光波在该结构中准直无发散地传输并实现分束功能,对制造工艺的要求大大降低.利用Rsoft软件,结合平面波展开法和二维时域有限差分法,对提出的偏振分束器进行了仿真研究.结果表明,该偏振分束器在一个较大的频率范围f=0.275—0.285(a/λ)内可实现横电(TE)和横磁(TM)模的大角度偏振分离,TE和TM模的透过率均在88%以上,偏振消光比分别大于26.57 dB和17.50 dB.该结构可应用到太赫兹波段的传输系统中,a=26μm,尺寸大小为572μm×546μm,在91—95μm波长范围内可实现TE和TM模的分离.利用该结构可设计用于光通信系统(n=3.48)的偏振分束器,a=426.25 nm,结构仅为9.38μm×8.95μm.本方案结构简单,易于集成,有望在集成光路的发展中发挥重要作用.  相似文献   

17.
Monodispersed silica microspheres of 270 nm are synthesized by a colloidal solution method. Larger scale perfect three-dimensional photonic crystals (PCs) are rapidly prepared using the evaporation of acetone to self-assemble the microspheres on quartz substrates by vertical deposition methods. We find that the pseudo-photonic band gap (PBG) of the PC structure changes with increasing annealing temperature; it drastically shifts from 450 nm for as-grown crystals to 409 nm for annealing at 800 °C. CdS photonic crystals are formed by infiltrating CdS nanocrystals of 6 nm into the SiO2 PC structure. The transmission and spontaneous emission characteristics of CdS PCs have been investigated. The clear dip in the spontaneous emission spectrum relates to the photonic band gap of CdS PCs, indicating that the spontaneous emission is inhibited in the region of the PBG. The emission band of CdS PCs becomes narrower and sharper than that of CdS nanocrystals; this demonstrates that the emission band and intensity of the luminescent devices will be tuned by controlling the position of the PBG. PACS 42.70.Qs; 42.25.Bs; 78.20.-e; 78.55.Et  相似文献   

18.
三维光子晶体压力传感器的研究   总被引:1,自引:0,他引:1  
韦以明 《计算物理》2008,25(4):483-487
基于平面波展开法,分析聚苯乙烯三维光子晶体的能带结构和传输特性.研究聚苯乙烯三维光子晶体对压力的响应性质;计算结果表明:0~41.3 MPa的外加压力与归一化频率0.596~0.608之间具有良好的线性关系,通过测量归一化频率可以感知压力的大小;由于光子晶体的结构周期与光波长为一个数量级,也就有可能制造出一系列精巧的三维光子晶体压力传感器.  相似文献   

19.
基于对光纤传输特性和胶体光子晶体制备方法的研究,提出了用外加电场控制的方法制备光子带隙位于通讯波段的FCC结构的胶体光子晶体,并用光纤系统测试胶体光子晶体的带隙特性.采用RSOFT模拟了胶体光子晶体的带隙,分析了带隙位于通讯波段时所需的胶体微球的基本参量(微球折射率和直径).采用自组装的方法,用步进电机控制玻璃基片向上的拉升速率.速率为5 μm/s,同时外加一电场.用扫描电镜观测胶体晶体的表面形貌,并设计了单模光纤系统测量胶体光子晶体的带隙特性.测试的透射谱线表明胶体光子晶体的带隙中心波长为1552 nm.测试结果和模拟结果具有很好的一致性,误差只有2 nm.  相似文献   

20.
The theoretical and experimental investigations of photonic band gaps in one-dimensional photonic crystals created by micromatchining silicon, which have been performed by the author as part of his doctoral dissertation, are presented. The most important result of the work is the development of a method of modeling photonic crystals based on photonic band gap maps plotted in structure–property coordinates, which can be used with any optical materials and in any region of electromagnetic radiation, and also for nonperiodic structures. This method made it possible to realize the targeted control of the optical contrast of photonic crystals and to predict the optical properties of optical heterostructures and three-component and composite photonic crystals. The theoretical findings were experimentally implemented using methods of micromatchining silicon, which can be incorporated into modern technological lines for the production of microchips. In the IR spectra of a designed and a fabricated optical heterostructure (a composite photonic crystal), extended bands with high reflectivities were obtained. In a Si-based three-component photonic crystal, broad transmission bands and photonic band gaps in the middle IR region have been predicted and experimentally demonstrated for the first time. Si–liquid crystal periodic structures with electric-field tunable photonic band-gap edges have been investigated. The one-dimensional photonic crystals developed based on micromatchining silicon can serve as a basis for creating components of optical processors, as well as highly sensitive chemical and biological sensors in a wide region of the IR spectrum (from 1 to 20 μm) for lab-on-a-chip applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号