首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conductivity, σ, of MnF2 and MgF2 single crystals, pure and doped (with Li+, Na+, Y3+, Gd3+), has been measured, from room temperature to 500°C. Further, some crystals were contaminated with O2? as an additional impurity. These tetragonal (rutile structure) crystals both behave like typical ionic conductors. Of particular interest is the existence of a large anisotropy, σ being largest when measured parallel to the c-axis. Study of the conductivity isotherms and anisotropy as functions of impurity concentration allows identification of the conduction mechanism in terms of the migration of two mobile defects: the fiuorine-ion vacancy, VF, and interstitial, Fi. A value of 1.44 eV was obtained for the enthalpy of formation of the intrinsic anion Frenkel defect, 0.80 eV for the migration enthalpy of a VF and 0.88 eV for an F1 in MnF2 parallel to the c-axis. Similar values were obtained for MgF2. This work shows that more information about point defects can be obtained from conductivity measurements in non-cubic cyrstals than in cubic ionic crystals, because of the additional information from conductivity anisotropy.  相似文献   

2.
本文研究了Lisicon(锗酸锌锂)单晶的Li+离子电导率。发现各结晶学方向电导率之间的关系为σb≤σa≤σc≤σ[110],但各向异性不强。晶体中Li含量对电导率有明显的影响,当Li/Zn比率由6.7变到9.2时,300℃a方向电导率由4.3×10-2Ω-1·cm-1增加到1.25×10-1Ω-1·cm-1,logσT对1/T的曲线显示出三个转变点,分别在~80℃,~140℃和~300℃。电导的激活能分别为0.50—0.58eV(25—80℃),0.92eV(~80—140℃),0.64eV(~140—300℃)和0.36eV(>300℃),极化实验表明单晶的电子电导可以忽略。 关键词:  相似文献   

3.
Single crystals of thallium monosulfide TlS with excess sulfur (4 at. %) are grown. The existence of monoclinic (of the TlGaSe2 type), tetragonal ordered (of the TlS type), and subtetragonal phases of thallium monosulfide is revealed using x-ray powder diffraction. The temperature dependences of the electrical conductivity and permittivity of thallium monosulfide single crystals indicate that, in the temperature range 401–411 K, these crystals undergo a phase transition to a state with superionic conduction.  相似文献   

4.
The time differential perturbed angular distribution method (TDPAD) has been applied to investigate the electric field gradient produced by radiation induced defects in the cubic lattices of CaF2 and SrF2. In mixed crystals of the alkaline-earth difluorides CaF2 or SrF2 and the rare earth trifluorides PrF3, NdF3 or SmF3 the amplitudesA 22 exp in the TDPAD spectra strongly depend on the rare earth trifluoride concentration. From the fact that the observed amplitudes are well described by a simple statistical model the conclusion can be drawn that the defects produced in CaF2 and SrF2 after proton irradiation are F? interstitials.  相似文献   

5.
The effect of the different cooling processes on the disorder of flourine ions and ionic conductivity in β-PbF2 has been studied by X-ray method and ionic conductivity measurements on single crystals below the transition temperature Tc. The spike-like diffuse scattering was observed along the <111>1 directions around the Bragg reflections. The activation energies for the conduction process are 0.40 eV for the sample quenched from 970 K and 0.54 eV for the one from 720 K. The higher the quenching temperature is, the higher the conductivity and the lower the activation energy become. The dependence of conductivity on the different cooling processes is more evident in single crystals than in polycrystalline samples. The contribution of the different cooling processes to ionic conductivity can be quantitatively explained by the extent of ordering of mobile fluorine ions. Time dependence of ionic conductivity has not been observed.  相似文献   

6.
The temperature dependences of the conductivities parallel and perpendicular to the layers in layered TlGaSe2 single crystals are investigated in the temperature range from 10 K to 293 K. It is shown that hopping conduction with a variable hopping length among localized states near the Fermi level takes place in TlGaSe2 single crystals in the low-temperature range, both along and across the layers. Hopping conduction along the layers begins to prevail over conduction in an allowed band only at very low temperatures (10–30 K), whereas hopping conduction across the layers is observed at fairly high temperatures (T?210 K) and spans a broader temperature range. The density of states near the Fermi level is determined, N F=1.3×1019eV·cm3)?1, along with the energy scatter of these states J=0.011 eV and the hopping lengths at various temperatures. The hopping length R along the layers of TlGaSe2 single crystals increases from 130 Å to 170 Å as the temperature is lowered from 30 K to 10 K. The temperature dependence of the degree of anisotropy of the conductivity of TlGaSe2 single crystals is investigated.  相似文献   

7.
The electrical ionic conductivity of unirradiated and irradiated CaF2: Nd crystals in the range of 60 to 800°C has been measured. The conductivity plot is basically divided into four parts, i.e., intrinsic and extrinsic unassociated, extrinsic associated, and extrinsic segregated regions. Activation energy (for unirradiated samples) in the extrinsic unassociated region is in the range of 0.69 to 1.20 eV depending on the doping concentration while for the intrinsic region, it is of the order of 1.89 eV. The conductivity in the extrinsic unassociated region increases with increase of Nd content in the sample. Also, the conductivity in the extrinsic region forγ-irradiated sample is higher than that for unirradiated one. In the intrinsic region, however, the conductivity is independent of dopant concentration orγ-irradiation. From these results it is surmised thatF interstitials are the charge carriers in this region for CaF2: Nd3+ system.  相似文献   

8.
Investigation results of dielectric (20?Hz–1?MHz) properties of layered CuBiP2Se6 crystals are presented. The temperature dependence of the static dielectric permittivity reveals the first-order “displacive” antiferroelectric phase transition at T c?=?136?K. In the paraelectric phase, at low frequencies, dielectric spectra are highly influenced by the high ionic conductivity with the activation energy of 2473?K (0.21?eV). In the antiferroelectric phase the electrical conductivity and its activation energy (531.1?K (0.045?eV)) are considerably smaller. At low temperatures, the temperature behaviour of the distribution of relaxation times reveals complex freezing phenomena. A part of long relaxation time distribution is strongly affected by external direct current (DC) electric field and it is obviously caused by antiferroelectric domain dynamics.  相似文献   

9.
Abstract

This work is concerned with thermally stimulated depolarization current (TSDC) and ionic conductivity studies in lead fluoride containing the small rare earths Dy, Ho, Er and Yb. The TSDC scans from 80 to 300 K show two peaks. For Pb1?xErxF2+x one is located at 106 K, and another, which is much stronger, occurs at about 160 K. The former is associated with a dipolar defect containing at least two rare earths and the latter is attributed to the development of F? space charge during polarization of the sample. The activation energies obtained from both the high temperature TSDC peak and the ionic conductivity are the same, which corroborates the latter assignment. In addition, the ionic conductivity is shown to be independent of concentration. Those results can be understood of rare earth clustering, which is either absent or is unobservable dielectrically for large rare earths such as lanthanum, occurs extensively even at very low concentrations of the small rare earths. The explanation is that the majority of fluorine charge compensators are trapped by clusters.  相似文献   

10.
The ionic conductivity has been measured of single crystals of rare earth fluoride solid solutions in Ca, Sr and Ba fluorides described by the formula M1?xRxF2+x (M=Ca, Sr, Ba; R=Y, La-Lu). The measurements have been done using dc and ac within the temperature range 300–850 K. With the increase of RF3 concentration up to x=0.05–0.15 (in different systems) conductivity steeply increases. With the further concentration growth the conductivity increases only slightly, reaching saturation value for the solid solution Ba1?xRxF2+x. The dependence of solid solution conductivity on the chemical composition has been studied for isoconcentrates M0.9R0.1F2.1. It has been established that in CaF2- based series the crystals with R=Gd, Tb possess maximum conductivity and minimum activation energy. For SrF2 and BaF2-based series the highest conductivity was observed for crystals containing LaF3. It has been established that for all the crystals, independent of the chemical composition and defect concentration, the conductivity logarithm at definite temperature linearly depends on the activation energy. Within the investigated class of substances the optimum composition for solid electrolytes is Sr0.69La0.31F2.31.  相似文献   

11.
Lithium ionic conductivity of Li3N single crystals is reported for temperatures from 120 K to 350 K. The intrinsic ionic conductivity is rather small (< 10?6 Ω?1 cm?1 at 300 K) and shows no strong anisotropy. The activation energy is near 0,6 eV. It is shown that hydrogen is the critical impurity in the crystals grown and studied at this laboratory. The relative impurity concentration is determined from infrared transmission measurements near 3130 cm?1. An estimate for absolute values is obtained from dielectric studies. Increases in ionic conductivity with hydrogen doping by a factor 5000 are reported for E⊥c but no significant effects are found for E6c. The proposed defect is an impurity-vacancy complex consisting of an NH?? and a lithium vacancy.  相似文献   

12.
S. W. Tao  J. T. S. Irvine 《Ionics》2000,6(5-6):389-396
Apatite is a mineral with general formula M10(XO4)6Z2, where M are metallic elements such as Li+, Na+, K+, Ca2+, Sr2+, Ba2+, Ln3+ etc.; X=P, V, S, Si, Ge, Re, Cr etc; Z=F, Cl, I, OH, O2−, S2− etc. Some materials with apatite structure (S.G. P63/m) exhibit quite high cationic (Li+, H+ etc.) and/or anionic (F, Cl etc.) conduction. Recently, it was reported that some rare earth silicates, e.g., La10(SiO4)6O3, exhibit quite high oxide-ion conductivity. In this paper, we discuss chemical composition, structure, synthetic procedure and ionic conduction of apatite-type materials. Recent improvements are briefly reviewed. High ionic conductivity has been observed for both cation deficient, oxygen stoichiometric La9.33(SiO4)6O2 and cation stoichiometric, oxygen excess La10(SiO4)6O3 compositions. Grain boundary conductivity is usually low, which tends to dominate the impedance response. The resistance, particularly the grain boundary resistance is also found to depend on pO2. Paper presented at the 7th Euroconference on Ionics, Calcatoggio, Corsica, France, Oct. 1–7, 2000.  相似文献   

13.
用惰性气体蒸发和真空原位加压方法制备了两种具有清洁界面的纳米离子固体CaF2(平均粒度为16nm)和Ca0.75La0.25F2.25(平均粒度为11nm),在31℃至530℃详细测量了其复阻抗谱。结果表明:1)在300—530℃两种纳米离子导体都很好地遵从Arrhenius方程式;2)纳米CaF2的离子电导率比多晶CaF2约高1个数量级、比单晶CaF2  相似文献   

14.
The luminescence and ionic conductivity of pure and doped BaFCl crystals are reported. The ionic conductivity occurs mainly via chloride ion vacancies, whereas the efficient, yellow luminescence is ascribed to oxygen impurities (OF).  相似文献   

15.
The ionic conductivity of single crystals of the fluorite-structured solid solutions Ba1?xLaxF2+x(10?3 <×<0.45) has been studied as a function of temperature and composition in the range 300–900 K. Three regions can be discerned in the concentration dependence of the ionic conductivity: a dilute concentration region (x<10?3), where classic relations between solute content and ionic conductivity hold; an intermediate concentration region (10?3<x?5×10?2), where large changes occur in the conductivity activation enthalpy and the magnitude of the conductivity; and a concentrated solid solution region (x?5×10?2) characterized by enhanced ionic motion. In the dilute region the migration enthalpy for interstitial fluoride ions is determined to be 0.714 eV, while a value of 0.39 eV is found for the (LaBaFi)X association enthalpy. The defect chemistry in the intermediate concentration region is shown to be controlled by a superlinear increase of the concentration of mobile defects, while in the concentrated solid solution region a composition-independent amount of ≈1 mole% of interstitial fluoride ions with enhanced mobility, carry the current.  相似文献   

16.
The temperature dependence of the electrical conductivity of the compound 2,4,4-trimethyl-4,5-dihydro-3H-benzo[b] [1,4] diazepin-1-ium tetrachlorocadmiate in the different phases follows the Arrhenius law. The imaginary part of the permittivity constant is analyzed with the Cole–Cole formalism. In the temperature range 348–394 K, the activation energy of conductivity obtained from complex permittivity in regions I and II are, respectively, 1.03 and 0.33 eV, and E m (in regions I and II are, respectively, 0.97 and 0.36 eV) obtained from the modulus spectra is close, suggesting that the ion transport is probably due to a hopping mechanism. The Kohlrausch–Williams–Watts function, j(t) = exp( - ( \fractt\textKWW )b ) \varphi (t) = \exp \left( { - {{\left( {\frac{t}{{{\tau_{\text{KWW}}}}}} \right)}^\beta }} \right) , and the coupling model are utilized for analyzing electric modulus at various temperatures. The decreasing of β at 373 K is due to approaching the temperatures of change in the conduction mechanism of the sample.  相似文献   

17.
The ionic and electronic conductivities of Ag2Tl6I10 single crystals have been studied as a function of crystallographic orientation and temperature from 20 to 135°C. EMF as well as AC and DC techniques have been employed. The highly anisotropic material is predominantly an Ag+-ion conductor parallel toc-direction, with the Ag+ ions moving through linear channels that are not interconnected. The conductivity σc =1.6×10−7Ω−1cm−1 at 25°C, with an activation enthalpy for σc of 0.38 eV. The conduction perpendicular toc-direction has been found to be predominantly electronic with a value of σc =3×10−9Ω−1cm−1 at 25°C and an activation enthalpy for σc of 0.64 eV. This is the first observation of one-dimensional Ag+ conduction and this type of orientation-dependent change from ionic to electronic conduction. On leave from Institute of Physics, Academia Sinica, Peking, China.  相似文献   

18.
The superionic conductivity and dielectric response of heavily doped fluorite-structured Ba1−xRxF2+x (R=La, Pr, Nd, Gd, Tb, Y, Sc; x=0.005–0.45) crystals are reported. The highest ionic conductivity is found for R=Sc and x=0.1. Upon ScF3 doping, small Sc3+ ions rearrange their surroundings, create excessive fluoride interstitial ions and bring about a high ionic conductivity. For each dopant, the concentration dependence of the ionic conductivity is non-linear. A monotonous concentration dependence of the ionic conductivity is found only for La3+ doping. Upon doping with Nd3+, Gd3+, Tb3+, Y3+ and Sc3+ ions, a conductivity maximum is observed at x=0.1–0.2. Upon Pr3+ doping, this maximum is split. The influence of defect clustering on the concentration dependence of the conductivity is discussed. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

19.
In this paper, we report the existence of anisotropic behavior along the crystallographic axes in optical, electrical and thermal properties of lithium tri borate, a recently developed vacuum UV-NLO material. The variation of refractive index with the wavelength along the crystallographic axes was investigated by prism coupling method. The results of impedance spectroscopy measurement reveal the presence of a strong anisotropy in ionic conductivity and dielectric constant along the axes and also show the super-ionic conduction behavior along the c-axis with the activation energy of Δ∼0.20 eV. A thermo-mechanical study in the temperature range of 300-900 K indicates the existence of a strong variation in the linear thermal expansion coefficient (positive value along the a-axis, and negative value along the c-axis) of LiB3O5 crystals.  相似文献   

20.
Summary Several transport and optical properties have been studied onn-type CuIn5S8 single crystals. The energy gap at 0 K was determined from the electrical measurements to be 1.4 eV. An anisotropy of the magnetoresistance effect was found and it was suggested that the minima of the conduction band were located at points along the [100] directions ink-space. An optical-absorption band was found in an infrared region of (1÷1.6) μm and was attributed to the transitions from the lowest conduction band situated along the [100] directions to an upper conduction band. Paper presented at the ?V International Conference on Ternary and Multinary Compounds?, held in Cagliari, September 14–16, 1982.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号