首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
In this work, the porous silicon layer was prepared by the electrochemical anodization etching process on n-type and p-type silicon wafers. The formation of the porous layer has been identified by photoluminescence and SEM measurements. The optical absorption, energy gap, carrier transport and thermal properties of n-type and p-type porous silicon layers were investigated by analyzing the experimental data from photoacoustic measurements. The values of thermal diffusivity, energy gap and carrier transport properties have been found to be porosity-dependent. The energy band gap of n-type and p-type porous silicon layers was higher than the energy band gap obtained for silicon substrate (1.11 eV). In the range of porosity (50-76%) of the studies, our results found that the optical band-gap energy of p-type porous silicon (1.80-2.00 eV) was higher than that of the n-type porous silicon layer (1.70-1.86 eV). The thermal diffusivity value of the n-type porous layer was found to be higher than that of the p-type and both were observed to increase linearly with increasing layer porosity.  相似文献   

2.
Birefringence in porous silicon layers prepared with different etching currents on a (110) substrate is studied by IR Fourier spectroscopy. The spectra exhibit beats in the intensity of transmitted and reflected radiation due to the summation of the intensities of the ordinary and extraordinary waves interfering in the porous layer. An analysis of the spectra shows the layers to exhibit properties of a negative uniaxial crystal with the optical axis lying in the layer plane. The difference between the refractive indices of the ordinary and extraordinary waves for a layer with a porosity of 80% reaches 18%. The experimental data are in agreement with the calculations based on the effective-medium approximation, which takes into account the anisotropy of silicon nanocrystal arrangement in a porous layer.  相似文献   

3.
This paper focuses on the study of the effect of anodic oxidation in porous silicon bilayers composed of two porous layers of different porosities. The order of the two types of layers has been alternated, and the thicknesses and refractive indices have been optically characterized by Fourier transform infrared spectroscopy. The results show that the refractive index of anodic oxidized porous silicon is reduced significantly with respect to just formed porous silicon. It is also observed that the quality of the oxidation is related to the porosity of the inner porous layer of the silicon bilayer structure. This effect is interpreted in terms of quantum size effects.  相似文献   

4.
严达利  李申予  刘士余  竺云 《物理学报》2015,64(13):137102-137102
采用双槽电化学腐蚀法以电阻率为10-15 Ω·cm的p型<100>晶向的单晶硅片制备了孔径约为1.5 μm, 孔深约为15-20 μm的p型多孔硅, 并以此多孔硅作为基底采用无电沉积法通过调控沉积时间在其表面沉积了不同厚度的银纳米颗粒薄膜. 采用扫描电子显微镜和X 射线衍射仪表征了银纳米颗粒/多孔硅复合材料的形貌和微观结构, 结果表明银纳米颗粒较均匀的分布于多孔硅的表面上且沉积时间对产物的形貌有重要影响. 采用静态配气法在室温下研究了银纳米颗粒/多孔硅复合材料对NH3的气敏性能. 气敏测试结果表明沉积时间对产物的气敏性能影响较大. 当沉积时间较短时, 适量银纳米颗粒掺杂的多孔硅复合材料由于其较高的比表面积以及特殊的形貌和结构, 对NH3气体表现出较高的灵敏度、优良的响应/恢复性能. 室温下, 其对50 ppm 的NH3气体的气敏灵敏度可以达到5.8左右.  相似文献   

5.
Microstructure and physical characteristics of porous silicon (PS), such as thickness, bulk porosity, dielectric permittivity, and refractive index depend directly on the production conditions, e.g., on the electrolyte composition, anodizing current density, duration of etching, etc. Various possibilities of applications of PS generate high interest towards elaboration of new or modified operative nondestructive methods for testing the microstructure characteristics of PS layer for the adjustment of its processing regimes.According to the mechanism of formation of PS and experimental data on the morphology of PS layers, a porous layer is represented as a structure with cylindrical pores of equal lengths piercing the silicon frame. This approximation allows considering the structure using the parallel plate model within parallel-connected capacitances of the silicon frame and the air or liquid dielectric-filled pores.A method for obtaining information on the volume porosity, thickness, and dielectric permittivity of a PS layer by means of two measurements of the structure capacitance—in dry air and when the pores are filled by a condensed medium having a dielectric permittivity strongly differing from that of air (e.g., methanol)—is described.Sufficiently good agreement has been revealed between the data calculated from the capacitance measurements and obtained by other methods.  相似文献   

6.
The features of formation of silicon structures with a periodically varying porosity are investigated by X-ray diffractometry. It is revealed that the magnitude of anode current density corresponding to the formation of a layer with higher porosity that is part of a multilayer porous structure also affects the porosity of a second, less porous layer. As time elapses, the single-crystalline matrix of which porous layers consist is amorphized and a structure consisting of amorphous layers with a periodically varying density arises.  相似文献   

7.
This review is devoted to the analysis of the problems related to fabrication of the Si porous layers. The review was motivated by a great interest to Si-based porous materials from nano- to macro-scale for various applications in electronics, optoelectronics, photonics, chemical sensors, biosensors, etc. The peculiarities of the silicon porosification and the principles of preparing porous layers are considered in the present article. Various methods used for Si porosification such as chemical stain etching, chemical vapor etching, laser-induced etching, metal-assisted etching, spark processing and reactive ion (plasma) etching were analyzed. However, the main attention was focused on electrochemical porosification of Si. The review discusses in detail the influence of parameters such as electrolyte composition and pH, current density, etching time, temperature, wafer doping and orientation, lighting, magnetic field, and ultrasonic agitation on the process of Si porosification. It was shown that the structure of porous silicon strongly depends on both technological parameters of electrochemical etching and the parameters of the semiconductor subject to treatment. This review also addresses the main properties of porous silicon, porous multilayer and 3D structure formation, oxidation of porous Si, release of the porous layer, drying, storage, etching, filling and surface functionalizing of porous Si. Features of III-V compound porosification are also briefly analyzed.  相似文献   

8.
Porous silicon layers were elaborated by anodization of highly resistive p-type silicon in HF/ethylene glycol solution under front side illumination, as a function of etching time, HF concentration and illumination intensity. The porous layer morphology was investigated by scanning electron microscopy (SEM). The illumination during anodization was provided by a tungsten lamp or lasers of different wavelengths. Under anodization, a microporous layer is formed up to a critical thickness above which macropores appear. Under illumination, the instability limiting the growth of the microporous layer occurs at a critical thickness much larger than in the dark. This critical thickness depends on HF concentration, illumination wavelength and intensity. These non-trivial dependencies are rationalized in a model in which photochemical etching in the electrochemically formed porous layer plays the central role.  相似文献   

9.
Porous silicon (por-Si) is prepared by the electrochemical etching of single-crystal n-silicon in an aqueous-alcoholic solution of hydrofluoric acid in the presence of hydrogen peroxide oxidizer. The dependence of the high-frequency C-V characteristics of Al/por-Si/Si heterostructures on the relative humidity is studied. A model of capacitor structure is proposed, and a method of analyzing its capacitance as a function of the water vapor partial pressure in terms of the adsorption isotherm is elaborated. Within the framework of this model, the porosity of the material, the effective fraction of silicon dioxide in the por-Si, the fraction of intercommunicating porosity, the micropore-to-mesopore volume ratio, and the mesopore size distribution are determined. The porous silicon prepared in this work seems promising as a sensitive layer in capacitance-type humidity sensors.  相似文献   

10.
利用电化学阳极腐蚀的方法制备了多孔硅膜,实验发现多孔硅膜为多层结构,表面层为纳米结构,其余为微米结构,多孔硅的物理及化学结构的研究表明多孔硅是一种表面上含硅、氧、氢、氟元素组成的化合物包覆着的纳米晶硅粒和微米硅丝.多孔硅的发光主要来自表面纳米结构层,亚微米结构层并未见发光,从实验上证实了多孔硅的发光与量子尺寸效应紧密关联.  相似文献   

11.
In this article we describe a reliable etching method to fabricate porous silicon free-standing membranes (FSMs) based on a self detachment of the porous layer in moderately doped n-type silicon substrates. We found that stable growth of smooth and straight pores is restricted to a narrow range of etching conditions and, unlike p-type substrates, the lift-off of the membrane is a self-limited process that does not require a large burst of current. The detachment of the porous membrane is independent of the structure of the already porosified layer, meaning that the average pore diameter can be tuned from nano to macro size within the same membrane. We also demonstrate that, despite their limited thickness, FSMs are quite robust and can sustained further processing. Thus, the etching receipt we are proposing here extends the range of sensors and filters that can be fabricated using porous silicon technology.  相似文献   

12.
The structural difference in the microporous structures of nanoporous carbon films is revealed by small-angle X-ray scattering; it consists in a higher porosity of the layers formed from the titanium carbide. The pore shape is shown to be equiaxed. Pores 20 Å in diameter mainly contribute to the porosity of the nanoporous carbon films. The characteristics of the porous structure of the nanoporous carbon layers synthesized from the titanium or silicon carbide are found using small-angle X-ray scattering. The porous structure is shown to consist of two size fractions of equiaxed pores 10 and 40 Å in radius. The porosity of the films is mainly contributed by the pores of the small size fraction; their fraction is 46 or 10% for the layers synthesized from the titanium or silicon carbide, respectively.  相似文献   

13.
多孔硅光致发光峰半峰全宽的压缩   总被引:3,自引:3,他引:0       下载免费PDF全文
硅发光对于在单一硅片上实现光电集成是至关重要的.目前已有的使硅产生发光的方法有:掺杂深能级杂质、掺稀土离子、多孔硅、纳米硅以及Si/SiO2超晶格.声空化所引发的特殊的物理、化学环境为制备光致发光多孔硅薄膜提供了一条重要的途径.实验表明,声化学处理对于改善多孔硅的微结构,提高发光效率和发光稳定性都是一项非常有效的技术.超声波加强阳极电化学腐蚀制备发光多孔硅薄膜,比目前通用的常规方法制备的样品显示出更优良的性质.这种超声波的化学效应源于声空化,即腐蚀液中气泡的形成、生长和急剧崩溃.在多孔硅的腐蚀过程中,由于超声波的作用增加了孔中氢气泡的逸出比率和塌缩,有利于孔沿垂直方向的腐蚀,使多孔硅光致发光峰的半峰全宽压缩到了3.8nm.  相似文献   

14.
利用浸渍法将8羟基喹啉铝(Alq3)镶嵌到多孔硅微腔中,制备了多孔硅微腔—Alq3镶嵌膜,研究了多孔硅微腔对镶嵌其中的Alq3自发发射的微腔效应,观察到了光谱窄化、发光强度增强等现象。镶嵌于多孔硅微腔中的Alq3荧光光谱的半峰全宽只有15nm,而非微腔样品,即镶嵌于普通的单层多孔硅中Alq3荧光谱半峰全宽在85nm以上。并且有微腔时Alq3发光强度比没有微腔时Alq3发光强度增强一个数量级。随机改变微腔中Bragg反射镜高折射率层的几何厚度可使高反射区展宽,从而更加有效地抑制了多孔硅本身的发光模,使发光色度更纯,但由于峰值透射率减小,导致共振峰强度有所减小。多孔硅微腔有机镶嵌膜有可能成为进一步发展Alq3在电致发光器件方面应用的一条新途径。  相似文献   

15.
We present a systematic study on ultrathin porous silicon (PS) layers (40–120 nm) of different porosities, formed by electrochemical etching and followed by thermal oxidation treatment (300°C and 600°C) and by electrochemical oxidation. The oxidised and non-oxidised PS layers have been analysed by spectroscopic reflectometry (SR), spectroscopic ellipsometry (SE) and secondary ion mass spectroscopy (SIMS). The SR and SE spectra were fitted by a multiparameter fit program and the composition and the thickness of the PS layers were evaluated by different optical models. PS layers, formed electrochemically in the outermost layer of a p/n+ monocrystalline silicon junction were successfully evaluated using a gradient porosity optical model. The non-oxidised PS, formed in p-type silicon, can be well described by a simple optical model (one-layer of two-components, silicon and voids). The spectra of the oxidised PS layers can be fitted better using an optical model with three interdependent components (crystalline-silicon, silicon-dioxide, voids). The SIMS results give a strong support for the optical model used for SR and SE.  相似文献   

16.
In the present paper, several samples of porous silicon monolayers and multilayers were prepared at different anodization conditions with fixed HF concentration. The room temperature photoluminescence wavelength observed to be increased with increased etching time and current density respectively. By Raman measurement it has been observed that as the size of silicon crystallites decreased with increased etching time, the silicon optical phonon line shifted somewhat to lower frequency from 520.5 cm−1 and became broader asymmetrically. The surface roughness and pyramid like hillocks surface was confirmed by AFM measurement. In SEM images, the porous silicon layers were clearly observed by white and black strips. It was also observed that the reflectivity increased as the number of porous silicon layers was increased.  相似文献   

17.
Porous silicon (PS) layers were fabricated by anodization of low resistive (highly doped) p-type silicon in HF/ethanol solution, by varying current density, etching time and HF concentration. Atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) analyses were used to investigate the physical properties and reflection spectrum was used to investigate the optical behavior of PS layers in different fabrication conditions. Vertically aligned mesoporous morphology is observed in fabricated films and with HF concentration higher than 20%. The dependence of porosity, layer thickness and rms roughness of the PS layer on current density, etching time and composition of electrolyte is also observed in obtained results. Correlation between reflectivity and fabrication parameters was also explored. Thermal oxidation was performed on some mesoporous layers that resulted in changes of surface roughness, mean height and reflectivity of the layers.  相似文献   

18.
The effect of etching time of porous silicon on solar cell performance   总被引:1,自引:0,他引:1  
Porous silicon (PS) layers based on crystalline silicon (c-Si) n-type wafers with (1 0 0) orientation were prepared using electrochemical etching process at different etching times. The optimal etching time for fabricating the PS layers is 20 min. Nanopores were produced on the PS layer with an average diameter of 5.7 nm. These increased the porosity to 91%. The reduction in the average crystallite size was confirmed by an increase in the broadening of the FWHM as estimated from XRD measurements. The photoluminescence (PL) peaks intensities increased with increasing porosity and showed a greater blue shift in luminescence. Stronger Raman spectral intensity was observed, which shifted and broadened to a lower wave numbers of 514.5 cm−1 as a function of etching time. The lowest effective reflectance of the PS layers was obtained at 20 min etching time. The PS exhibited excellent light-trapping at wavelengths ranging from 400 to 1000 nm. The fabrication of the solar cells based on the PS anti-reflection coating (ARC) layers achieved its highest efficiency at 15.50% at 20 min etching time. The I-V characteristics were studied under 100 mW/cm2 illumination conditions.  相似文献   

19.
In this paper, we present a study on the porous silicon surface with the aim of filling porous silicon layers with organics. We discuss on two processes used to remove the outer parasitic layer created during the porous silicon formation. We demonstrate that these etching processes influences the surface properties, in particular wetting ability. By XPS and infrared absorption spectroscopy studies, we show that a SF6 plasma treatment does not modify irreversibly the chemistry of porous silicon surface, nor the surface morphology. We also point out that NaOH etching does bring significant morphological modifications and influences the hydrophilicity of the porous silicon surface. This last treatment increases the polar groups (SiO) concentration on the pore surface and therefore allows a better filling of a porous silicon layer with organics, like dibromo-EDOT which can be thermally converted into PEDOT.  相似文献   

20.
邸玉贤  计欣华  胡明  秦玉文  陈金龙 《物理学报》2006,55(10):5451-5454
通过基底曲率法设计和制作了一种测量薄膜应力的装置,它具有全场性、非接触性、高分辨率、无破坏、数据获取速度快等特点.使用该装置测量了电化学腐蚀法制作的多孔硅薄膜的残余应力,并研究了孔隙率和基底掺杂浓度对残余应力的影响,结果表明随着孔隙率的增加和硼离子掺杂浓度的提高,多孔硅表面的拉伸应力逐渐加大,由此表明多孔硅薄膜的微观结构与残余应力的大小有着密切的联系. 关键词: 薄膜 残余应力 孔隙率 多孔硅  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号