首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The utmost limit performance of interband cascade detectors optimized for the longwave range of infrared radiation is investigated in this work. Currently, materials from the III–V group are characterized by short carrier lifetimes limited by Shockley-Read-Hall generation and recombination processes. The maximum carrier lifetime values reported at 77 K for the type-II superlattices InAs/GaSb and InAs/InAsSb in a longwave range correspond to ~200 and ~400 ns. We estimated theoretical detectivity of interband cascade detectors assuming above carrier lifetimes and a value of ~1–50 μs reported for a well-known HgCdTe material. It has been shown that for room temperature the limit value of detctivity is of ~3–4×1010 cmHz1/2/W for the optimized detector operating at the wavelength range ~10 μm could be reached.  相似文献   

2.
In this paper we report a theoretical analysis of a long wavelength photoconductive detector for characterizing and optimizing the device in respect of voltage responsivity, quantum efficiency, detectivity and noise equivalent power. The model has been applied to examine the potential of an n-type Hg0.77Cd0.23Te photoconductive detector for possible application in free space optical communication system operating at the atmospheric window near 9.6 μ m. In the present analysis we have taken into account all the major recombination mechanisms (e.g., Radiative, Auger, and Shockley-Read-Hall types) including the effect of surface recombination at the interfaces that shape the characteristics of photoconductor. The results obtained on the basis of our analysis reveal that in the absence of surface recombination the device exhibits a peak quantum efficiency of 90%, a maximum detectivity of 108 MHz1/2/W at 77 K, a 3 dB bandwidth of 117.86 MHz and noise voltage of 5.4 × 10−6 V/Hz1/2. The sweep-out effect has been found to degrade the detectivity nearly by a factor of 10 at the same temperature and wavelength of operation. The estimated noise equivalent power of the photodetector is of the order of 10−9 W at 9.6 μm wavelength.  相似文献   

3.
A photovoltaic detector design based on the graded band gap HgCdTe MBE structure with high conductivity layer (HCL) at interface, which provides photodiodes series resistance and a shortwave cut.off filter is developed. The optimal HCL parameters giving high quantum efficiency and minimal noise equivalent temperature difference were determined by calculations and experimentally confirmed. The hybrid 320×256 IR FPA operating in 8–12 μm spectral range was fabricated. The threshold power responsivity and minimal noise equivalent temperature difference values at wavelength maximum were 1.02×10−7 W/cm2, 4.1×108 V/W and 27 mK, respectively.  相似文献   

4.
The paper reports on the barrier mid-wave infrared InAs/InAsSb (xSb = 0.4) type-II superlattice detector operating below thermoelectrical cooling. AlAsSb with Sb composition, xSb = 0.97; barrier doping, ND < 2×1016 cm?3 leading to valence band offset below 100 meV in relation to the active layer doping, ND = 5×1015 cm?3 was proved to be proper material not introducing extra barrier in valence band in the analyzed temperature range in XBn architectures. The detectivity of the simulated structure was assessed at the level of ~ 1011 Jones at T ~ 100 K assuming absorber thickness, d = 3 μm. The detector’s architecture for high frequency response operation, τs = 420 ps (T ~ 77 K) was presented with a reduced active layer of d = 1 μm.  相似文献   

5.
The performance of n-type HgCdTe mid-wavelength infrared (MWIR) photoconductors has been investigated using two-dimensional (2-D) device modelling. A comparison has been made between a practical detector structure with planar contacts on the upper HgCdTe surface, and a structure commonly used in one-dimensional (1-D) device modelling with end contacts to the photo-absorbing slab of semiconductor. This comparison highlights differences in detector responsivity, and spatial distribution of both the applied electric field and photogenerated minority carriers. The practical device structure, where 2-D effects are most evident, provided a good fit to experimental results for frontside-illuminated n-type HgCdTe photoconductive detectors with n+/n blocking contacts without needing to include S, the contact recombination velocity, which is commonly employed in 1-D models as a fitting parameter. Instead, only the n+ doping density (1 × 1016 cm–3) and n+ doping region (depth of 3 μm), were used to account for the partial blocking of minority carriers by the contact region. In addition, the 2-D model was used to examine the influence of n+ blocking contact geometry and doping density on n-type HgCdTe photoconductor responsivity performance.  相似文献   

6.
Room temperature In0.97Ga0.03As photodiodes with an InAs0.36Sb0.20P0.44 transparent window layer operating in the mid-infrared region over the wavelength range 1.8–3.4 μm are reported. The InAs0.36Sb0.20P0.44/In0.97Ga0.03As heterojunction photodiodes were grown on p-type (100) InAs substrates by liquid phase epitaxy (LPE). Basic detector characteristics have been measured and compared with other detectors in this wavelength range. The typical detectivity of the photodiodes is 1.2 × 1010 cm Hz1/2/W at room temperature, which compares very favourably with that of TE cooled HgCdTe and is at least three times that of cooled PbSe photoconductors. The InAs0.36Sb0.20P0.44/In0.97Ga0.03As heterojunction photodiodes offer the advantage of increased sensitivity and extended wavelength response at room temperature compared with that of currently available commercial photodetectors, making them an attractive alternative for a number of mid-infrared applications including optical gas sensors and infrared spectrometers.  相似文献   

7.
The long wavelength (8–12 μm) IR FPA 288×4 based on a hybrid assembly of n+-p diode photosensitive arrays (PA) of HgCdTe (MCT) MBE-grown structures and time delay integration (TDI) readout integrated circuits (ROIC) with bidirectional scanning have been developed, fabricated, and investigated. The p-type MCT structures were obtained by thermal annealing of as-grown n-type material in inert atmosphere. The MCT photosensitive layer with the composition 0.20–0.23 of mole fraction of CdTe was surrounded by the wide gap layers to decrease the recombination rate and surface leakage current. The diode arrays were fabricated by planar implantation of boron ions into p-MCT. The typical dark currents were about 4–7 nA at the reverse bias voltage of 150 mV. The differential resistance R was up to R0 = 1.6×107 Ω zero bias voltage, which corresponded to R0A ~70 Ω ·cm2 and to the maximal value Rmax = 2.1 × 108 Ω. The bidirectional TDI deselecting ROIC was developed and fabricated by 1.0-μm CMOS technology with two metallic and two polysilicon layers. The IR FPAs were free of defect channels and have the average values of responsivity Sλ = 2.27×108 V/W, the detectivity Dλ * = 2.13 × 1011 cm × Hz1/2 × Wt1, and the noise equivalent temperature difference NETD = 9 mK.  相似文献   

8.
In this paper we report an analytical modeling of N+-InP/n0-In0.53Ga0.47As/p+-In0.53Ga0.47As p-i-n photodetector for optical fiber communication. The results obtained on the basis of our model have been compared and contrasted with the simulated results using ATLAS? and experimental results reported by others. The photodetector has been studied in respect of energy band diagram, electric field profile, doping profile, dark current, resistance area-product, quantum efficiency, spectral response, responsivity and detectivity by analytical method using closed form equations and also been simulated by using device simulation software ATLAS? from SILVACO® international. The photodetector exhibits a high quantum efficiency ~90%, responsivity ~1.152–1.2 A/W in the same order as reported experimentally by others, specific detectivity ~5 × 109 cm Hz1/2 W?1at wavelength 1.55–1.65 μm, dark current of the order of 10?11 A at reverse bias of 1.5 V and 10?13–10?12 A near zero bias. These values are comparable to those obtained for practical p-i-n detectors. The estimated noise equivalent power (NEP) is of the order of 2.5 × 10?14 W.  相似文献   

9.
The paper present the numerical analysis of the electrical and optical properties of the mid-wave infrared (MWIR) HgCdTe nBn type detectors with a 3.4 μm cut-off wavelength (at 50% of the initial rise in the response) operating at 230 K. The analysed n+/B/n/N+ structure consists of four HgCdTe layers with n- and p-type barriers. Different structural parameters, as well as compositional and dopant profiles obtained in molecular beam epitaxy (MBE) and metal organic chemical vapour deposition (MOCVD) techniques were modelled with emphasis on conduction band and valence band-offset which determines the proper construction of the nBn type devices. The barrier must prevent the flow of the electron current from the cap region to the absorber while simultaneously ensure the flow and collection of thermally and optically generated holes from the absorber to the cap region. It was shown that proper p-type doping of the barrier reduce the valence band-offset and increase the offset in the conduction band leading to the optimal detector architecture.Theoretical results were related to the experimental data of the MWIR n+/B/n/N+ photodetectors grown by MOCVD. Dark currents of the first fabricated devices are limited by undesirable iodine diffusion from cap layer to the barrier. However, the nBn architecture might be a promising solution for HgCdTe infrared detectors grown by MOCVD, mainly due to the possibility of in situ acceptor doping of the barrier.  相似文献   

10.
A modulation doped thyristor concept is described for LWIR photodetection based upon intersubband bound to continuum absorption. The intersubband absorption generates photocurrent from undoped quantum wells to modulation doped layers (MDL). Due to the lower dark current compared to conventional quantum well infrared photodetectors (QWIPs), the thyristor infrared detector operates with little or no cooling and with similar or better performance than QWIPs at low temperatures. The operating characteristics of absorption coefficient, quantum efficiency, responsivity, detectivity, infrared gain, and dark current are determined as a function of thyristor voltage and input power level in the range of 1 μW/cm2.  相似文献   

11.
The 256×1 linear array of multiple quantum wells infrared photodetector (QWIP) is designed and fabricated for the peak response wavelength at λ P = 14.6 μm. The response spectral width is bigger than 2.2 μm. The two-dimensional (2D) diffractive coupling grating has been formed on the top QWIP photosensitive pixel for coupling the infrared radiation to the infrared detective layers. The performance of the device at V B = 3 V and T = 45 K has the responsibility 4.28×10−2 (A/W), the blackbody detectivity D b* = 5.14×109 (cm·Hz1/2/W), and the peak detectivity D λ * = 4.24× 1010 (cm·Hz1/2/W). The sensor pixels are connected with CMOS read out circuit (ROC) hybridization by indium bumps. When integral time is 100 μs, the linear array has the effective pixel of QWIP FPA N ef of 99.2%, the average responsibility (V/W) of 3.48×106 (V/W), the average peak detectivity D λ * of 8.29×109 (cm·Hz1/2/W), and the non-uniformity UR of 5.83%. This device is ready for the thermal image application. Supported by the National Natural Science Foundation of China (Grant No. 10374095)  相似文献   

12.
This paper presents a monolithic uncooled 8 × 8 bolometer array with polycrystalline silicon-germanium (poly-SiGe) thermistors as active elements. The poly-SiGe films are deposited by ultrahigh vacuum vapor deposition (UHV/CVD) system and the dependence of the temperature coefficient of resistance (TCR) on annealing temperature has been investigated. To decrease the thermal conductance of the bolometer, the poly-SiGe thermistor was formed on a four leg suspended microbridge. The improved porous silicon micromachining techniques described here enable the integration of the bolometer array with the MOS readout circuitry. The measurements and calculations show that the mean responsivity is 1.07 × 104 V/W with an uncorrected uniformity of 10.5% and a thermal response time of 10.5 ms, and the detectivity of 3.75 × 108 cm Hz1/2/W is achieved at a chopping frequency of 30 Hz and a bias voltage of 5 V.  相似文献   

13.
近红外单光子探测器   总被引:3,自引:0,他引:3       下载免费PDF全文
该单光子探测器在实验中使用半导体制冷器制冷,雪崩二极管工作于盖革模式下,使用交流耦合方式提供门脉冲信号,通过延迟补偿和采样门控消除尖脉冲干扰,采用反馈门控减小后脉冲影响,优化电路参数减小暗计数.经实验测试与分析,温度在-62.5℃,门脉冲宽度为50ns,采样门控为10ns的条件下,最佳工作点的暗计数率小于4×10-6ns-1,量子效率约18%,噪声等效功率为2.4×10-19W/Hz1/2.  相似文献   

14.
The possibilities of using emission photodetectors based on the p +–GeSi/p–Si heterojunctions in the spectral range 8–12 m are considered. The dependences of spectral detectivity and noise-equivalent temperature difference on the temperature and detector parameters are analyzed.  相似文献   

15.
    
8-element linear array IR detectors based on high Tc superconducting films have been fabricated. The thin films were deposited by magnetron sputtering onZrO 2 substrates and patterned by standard photolithographic technique forming microbridge structure. An average detectivity of 1.85 × 109 cmHz 1/2 W–1 with a variance of less than 20% in the detector-to-detector detectivity of the array has been obtained at the operating temperature of 84K. A bolometric response mechanism has been discussed.  相似文献   

16.
Micromachined Uncooled IR Bolometer Linear Array Using VO2 Thin Films   总被引:2,自引:0,他引:2  
Mixed vanadium oxide thin films, as VO2 for the main composition are materials for uncooled microbolometer due to their high temperature coefficient of resistance (TCR) at room temperature. This paper describes the design and fabrication of 8-element linear array IR uncooled microbolometers using the films and micromachining technology. The characteristics of the array is investigated in the spectral region of 8–12 m. The fabricated detectors exhibit responsivity of up to 10 KV/W, typical detectivity of 1.89×108 cmHz1/2/W, and thermal time constant of 11 ms, at 296 K and at a frequency of 30 Hz. Furthermore, The uncorrected response uniformity of the linear array bolometers is less than 20%.  相似文献   

17.
基于VO2薄膜非致冷红外探测器光电响应研究   总被引:3,自引:0,他引:3       下载免费PDF全文
VO2薄膜是非致冷微测辐射热红外探测器热敏电阻材料.研究中应用微电子工艺制备了VO2溅射薄膜红外探测器,在296K的环境中测试了该探测器在不同的直流偏置、光调制频率下对873K标准黑体源8—12μm红外辐射的光电响应以及器件的噪声电压,在10和30Hz的调制频率下其响应率分别大于17kV/W和接近10kV/W.该探测器实现了探测率D大于1.0×108cm (Hz)1/2/W,热时间常量为0.011s的8—12μm非致冷 关键词: 非致冷测辐射热探测器 红外探测器 二氧化钒 薄膜  相似文献   

18.
We report a sensitive photodetector, based on a manganite junction La2/3Ca1/3MnO3/Si, for femtosecond (fs) pulse laser energy per pulse and average power measurements. The La2/3Ca1/3MnO3/Si photodetector exhibits D? (normalized detectivity) greater than 5.229×109 cm Hz1/2 W?1. The open-circuit photovoltage and short-circuit photocurrent responsivities reach ~268 V/mJ and ~275 A/mJ for single pulse irradiation, respectively, and the open-circuit photovoltage responsivity reaches ~1.7 V/W for average power illumination. The experimental results make the manganite junction a promising fs laser measurement detector and reference standard for calibrating fs lasers.  相似文献   

19.
We have investigated the electrical and optical properties of an nBn based Type-II InAs/GaSb strained layer superlattice detector as a function of absorber region background carrier concentration. Temperature-dependent dark current, responsivity and detectivity were measured. At T = 77 K and Vb = 0.1 V, with two orders of magnitude change in doping concentration, the dark current density increased from ~0.3 mA/cm2 to ~0.3 A/cm2. We attribute this to a depletion region that exists at the AlGaSb barrier and the SLS absorber interface. The device with non-intentionally doped absorption region demonstrated the lowest dark current density (0.3 mA/cm2 at 0.1 V) with a specific detectivity D1 at zero bias equal to 1.2 × 1011 Jones at 77 K. The D1 value decreased to 6 × 1010 cm Hz1/2/W at 150 K. This temperature dependence is significantly different from conventional PIN diodes, in which the D1 decreases by over two orders of magnitude from 77 K to 150 K, making nBn devices a promising alternative for higher operating temperatures.  相似文献   

20.
超巨磁阻测辐射热仪   总被引:12,自引:0,他引:12       下载免费PDF全文
顾梅梅  张鹏翔  李国桢 《物理学报》2000,49(8):1567-1573
基于超巨磁阻(CMR)材料在金属-绝缘体(M-I)转变点附近的巨大电阻变化,设计并测试了一种新型超巨磁阻测辐射热仪(CMR bolometer).用外延法生长的La0.67Ca0.33MnO3 薄膜作为测辐射热仪的辐射敏感元件,测量了该器件对黑体和He-Ne激光器的光学响应.所测的信号、噪声都随调制频率的上升而下降,但对于He-Ne激光源,它的信噪比却没有明显的改变.测量了薄膜铁磁金属态和顺磁绝缘态的信号-温度关系,最强的信号出现在靠近M- 关键词: 超巨磁阻  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号