首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
本文基于电化学反应原理及热力学分析方法,研究固体氧化物燃料电池非热力循环产功机理.基于电化学反应原理,建立了SOFC性能分析模型,研究了SOFC电池性能与电化学参数之间的变化关系,从而揭示了SOFC化学能直接转变为电能的机理;分析了热力学参数及电化学参数对SOFC系统性能的影响规律,提出改善SOFC电池性能的途径,并揭示了通过SOFC与先进热力循环系统集成进一步提高动力系统性能的潜力.本文研究成果为开拓研究高效SOFC复合动力系统提供有益的参考.  相似文献   

2.
固体氧化物燃料电池(SOFC)是一种将储存在燃料和氧化剂中的化学能通过电化学反应的方式直接转换为电能和中高温热能的全固态发电装置,被认为是最接近商业化的先进清洁高效发电技术之一。为了考察SOFC在变负荷条件下的稳态和非稳态特性,在MATLAB模拟环境下,建立了板式SOFC的一维稳态和非稳态分布参数模型,该模型充分考虑了SOFC中传热传质、流体流动、化学与电化学反应等因素相互耦合的影响,模拟分析了SOFC在不同条件下的工作参数变化对系统性能的影响。  相似文献   

3.
本文基于单相等温模型,以间歇排气PEMFC阳极部分为研究对象,采用多松弛Boltzmann方法从孔隙尺度对间歇排气PEMFC内阳极中的流动、传质、电化学反应等电池局部特性进行模拟,并研究了操作温度、压力等对阳极局部特性分布的影响。结果表明,多松弛Boltzmann方法可以很好地预测PEMFC阳极流体流动情况,间歇排氢有助于提升电池的性能,电池操作温度及压力对间歇排氢的电池性能有一定的影响。  相似文献   

4.
李文飞  张建  王骏  王炜 《物理学报》2015,64(9):98701-098701
分子模拟是研究生物大分子的重要手段. 过去二十年来, 人们将分子模拟与实验研究相结合, 揭示出生物大分子结构和动力学方面的诸多重要性质. 传统分子模拟主要采用全原子分子模型或各种粗粒化的分子模型. 在实际应用中, 传统分子模拟方法通常存在精度或效率瓶颈, 一定程度上限制了其应用范围. 近年来, 多尺度分子模型越来越受到人们的关注. 多尺度分子模型基于统计力学原理, 将全原子模型和粗粒化模型相耦合, 有望克服传统分子模拟方法中的精度/效率瓶颈, 进而拓展分子模拟在生物大分子研究中的应用范围. 根据模型之间的耦合方式, 近年来发展起来的多尺度分子模拟方法可归纳为如下四种类型: 混合分辨多尺度模型、并行耦合多尺度模型、单向耦合多尺度模型、以及自学习多尺度模型. 本文将对上述四类多尺度模型做简要介绍, 并讨论其主要优缺点、应用范围以及进一步发展方向.  相似文献   

5.
《工程热物理学报》2021,42(9):2401-2408
固体氧化物燃料电池(Solid oxide fuel cell,SOFC)在高温下工作,影响电池性能和结构完整性的因素众多,如何能够综合考虑这些因素并准确地预测和优化电池结构与工作性能是亟待解决的问题。使用COMSOL软件建立了单个平板式固体氧化物燃料电池多场耦合有限元三维模型,考虑电化学反应、物质浓度、流体流动、传热和固体力学多物理因素共同作用下,探明了电池在工作阶段的气体摩尔分数、电流密度、温度和热应力的分布规律。结果表明,氢气和氧气的摩尔分数随着气体流动的方向逐渐降低;在电池空气入口处,电解质电流密度较大;电池温度分布不均匀并产生了较大的热应力。本文建立的SOFC多场耦合模型可为后续SOFC的研究提供分析方法和理论支持。  相似文献   

6.
固体氧化物燃料电池(SOFC)是一种清洁高效的发电设备,其电极微结构直接影响电池的电化学性能。本文通过X-ray技术获取了SOFC阳极微结构,将电荷和物质传导定义在体相材料,将电化学反应定义在三相边界线上,建立了SOFC阳极电化学–传质耦合的三维微观模型,对比了两个微结构在80?C条件下的极化特性。研究表明微结构对电极内部物理场分布有极大影响,越靠近电极电解质界面,活化极化和离子电势波动越强烈。电极孔隙相细小的喉附近存在较大传质阻力,形成明显浓度极化跳跃。活化极化和欧姆极化大小相当,各占据总损失的45%以上。本文模型可用于研究微结构改变引起的电池退化和电极的优化设计。  相似文献   

7.
本文采用与实验I-V曲线高度吻合的多物理场全耦合数值模型来模拟低水甲烷燃料SOFC的运行过程.基于抗积碳电流密度实验数据推导出的动力学积碳活性判据,利用多场耦合数值模型系统研究了电池工作参数和阳极扩散阻碍层厚度对阳极积碳倾向的影响.仿真模拟揭示了燃料利用率、电流密度、扩散阻碍层厚度和电池工作电压的相互关系.结果表明,在阳极添加400 um厚的扩散阻碍层是实现SOFC高功率密度和不积碳运行的最优设计.这种阳极结构设计对实现高效率低成本的SOFC技术具有重要意义.  相似文献   

8.
本文采用与实验I-V曲线高度吻合的多物理场全耦合数值模型来模拟低水甲烷燃料SOFC的运行过程. 基于抗积碳电流密度实验数据推导出的动力学积碳活性判据,利用多场耦合数值模型系统研究了电池工作参数和阳极扩散阻碍层厚度对阳极积碳倾向的影响. 仿真模拟揭示了燃料利用率、电流密度、扩散阻碍层厚度和电池工作电压的相互关系. 结果表明,在阳极添加400 um厚的扩散阻碍层是实现SOFC高功率密度和不积碳运行的最优设计. 这种阳极结构设计对实现高效率低成本的SOFC技术具有重要意义.  相似文献   

9.
在传统单一孔隙率多孔材料中引入宏观尺度的周期性梯度穿缝结构设计,构造出梯度穿缝型双孔隙率多孔材料,其包含多孔材料基体微孔尺度与穿缝尺度两个尺度。采用分层等效的理论建模方法,将复杂梯度渐变问题变为多层均匀等效层叠加问题。针对不同特征尺寸的多孔材料薄层,分别采用低、高两种渗透率对比度双孔隙率理论,给出了其等效密度和动态压缩系数,再应用传递矩阵方法得到了相邻薄层之间的声压和质点速度传递关系并求得其表面声阻抗,从而建立了梯度穿缝型双孔隙率多孔材料的吸声理论模型。发展了多尺度材料声学有限元数值模型,在所考虑的100~3000 Hz频段范围内数值模拟结果完全吻合理论模型结果。理论与模拟分析了多尺度结构参数对双孔隙率多孔材料吸声性能的影响,结果表明引入多尺度梯度结构设计能够显著提高单一孔隙率多孔材料的吸声性能,且穿缝尺度比穿缝梯度影响更为显著;精细数值模拟获得的声压和能量密度分布云图揭示了多尺度结构设计的吸声增强机制。该工作可用于指导双孔隙率多孔材料的多尺度结构设计,从而提高多孔材料的中低频吸声性能。   相似文献   

10.
在质子交换膜燃料电池(PEMFC)阴极中,电化学反应速率较低,且反应气体传递缓慢,阴极成为限制PEMFC性能提高的主要因素之一。在阴极中发生着各种物理、化学、电学、电化学过程。从孔隙尺度研究有助于深刻理解这些过程。本文利用格子-Boltzmann方法(LBM)研究了PEMFC阴极中的流动、反应物和生成物的传质、质子传递和电化学反应过程。提出了综合模拟阴极中发生的过程的VCCP-LBM方案。讨论了利用VCCP-LBM模拟得到的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号