首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have investigated temperature‐induced Raman spectral changes of deuterated water in an ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim][BF4]), between room temperature and 77 K. The comparison of the OH and OD stretching vibrational spectra at 77 K shows that the strength of the hydrogen bonds in [bmim][BF4]–water mixtures strongly depends on the type of water, i.e. H2O and D2O. In the [bmim][BF4]–D2O system, remarkably strong hydrogen bonds form at low temperatures, but they switch to nearly free hydrogen bonds on heating. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The reactivity of Chlorpyrifos‐Methyl ( 1 ) toward hydroxyl ion and the α‐nucleophile, perhydroxyl ion was investigated in aqueous basic media. The hydrolysis of 1 was studied at 25 °C in water containing 10% ACN or 7% 1,4‐dioxane at NaOH concentrations between 0.01 and 0.6 M ; the second‐order rate constant is 1.88 × 10?2 M ?1 s?1 in 10% ACN and 1.70 × 10?2 M ?1 s?1 in 7% 1,4‐dioxane. The reaction with H2O2 was studied in a pH range from 9.14 to 12.40 in 7% 1,4‐dioxane/H2O; the second‐order rate constant for the reaction of HOO? ion is 7.9 M ?1 s?1 whereas neutral H2O2 does not compete as nucleophile. In all cases quantitative formation of 3,5,6‐trichloro‐2‐pyridinol ( 3 ) was observed indicating an SN2(P) pathway. The hydrolysis reaction is inhibited by α‐, β‐, and γ‐cyclodextrin showing saturation kinetics; the greater inhibition is produced by γ‐cyclodextrin. The reaction with hydrogen peroxide is weakly inhibited by α‐ and β‐cyclodextrin (β‐CD), whereas γ‐cyclodextrin produces a greater inhibition and saturation kinetics. The kinetic data obtained in the presence of β‐ or γ‐cyclodextrin for the reaction with hydroxyl or perhydroxyl ion indicate that the main reaction pathway for the cyclodextrin‐mediated reaction is the reaction of HO? or HOO? ion with the substrate complexed with the anion of the cyclodextrin. The inhibition is attributed to the inclusion of the substrate with the reaction center far from the ionized secondary OH groups of the cyclodextrin and protected from external attack of the nucleophile. Sucrose also inhibits the hydrolysis reaction but the effect is independent of its concentration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
As a probe of local structure, the vibrational properties of the 1‐butyl‐3‐methylimidazolium tetrafluoroborate [bmim][BF4] ionic liquid were studied by infrared (IR), Raman spectroscopy, and ab initio calculations. The coexistence of at least four [bmim]+ conformers (GG, GA, TA, and AA) at room temperature was established through unique spectral responses. The Raman modes characteristic of the two most stable [bmim]+ conformers, GA and AA, according to the ab initio calculations, increase in intensity with decreasing temperature. To assess the total spectral behavior of the ionic liquid both the contributions of different [bmim]+ conformers and the [bmim]+− [BF4] interactions to the vibrational spectra are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
To explore the possibility of hydrogen bonding of a stable anion radical with DNA – component sugar, hormones, steroid, and so on (through hydroxyl group), as a first step, the possibility of hydrogen bonding of 1,3‐dinitrobenzene anion radical (1,3‐DNB??) with aliphatic alcohols was studied. It was found that 1,3‐DNB?? anion radical undergoes hydrogen bonding with alcohols: methanol, ethanol, and 2‐proponal. The hydrogen‐bonding equilibrium constant Keq and the (hydrogen‐bonding) rate constants k2 were evaluated through the use of linear scan and cyclic voltammetry theory and techniques. The Keq was found to be in the range of 1.4–6.0 m ?1, whereas the rate constants k2 were found to be in the range of 1.5–3.6 m ?1 s?1, depending upon the hydrogen‐bonding agent and the equation used for the calculation of the rate constants. The hydrogen‐bonding number n was found to be around 0.5 or 1.0. The implication of this study in, for example, the replication of DNA, the prevention of the formation of super oxide, and so on is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The type of specific intermolecular and interionic interactions that are established when an ionic liquid is dissolved in water was here analysed. The study of the solvatochromic response of dipolarity micro‐sensors based on Reichardt ET(30) and Kamlet–Abboud–Taft solvent scales and the application of the solvent exchange model confirmed the formation of different intersolvent complexes in binary mixtures of (water + [C4mim] [BF4]/[Br]) type. These complexes provide H‐bond or electron pairs to the polar network, respectively. Moreover, for 4‐methoxybenzenesulfonyl chloride hydrolysis reaction in the (water + [C4mim] [BF4]) system, a higher inhibition (13 times) on the kobs values was observed. Multiple linear regression analysis that allows confirming the solvent effect upon the reactive system is due to the hydrogen‐bond donor properties of intersolvent complex formed. Then, the correlation between two different solvent‐dependent processes proved to be successful. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Excited‐state intermolecular or intramolecular proton transfer (ESIPT) reaction has important potential applications in biological probes. In this paper, the effect of benzo‐annelation on intermolecular hydrogen bond and proton transfer reaction of the 2‐methyl‐3‐hydroxy‐4(1H)‐quinolone (MQ) dye in methanol solvent is investigated by the density functional theory and time‐dependent density functional theory approaches. Both the primary structure parameters and infrared vibrational spectra analysis of MQ and its benzo‐analogue 2‐methyl‐3‐hydroxy‐4(1H)‐benzo‐quinolone (MBQ) show that the intermolecular hydrogen bond O1―H2?O3 significantly strengthens in the excited state, whereas another intermolecular hydrogen bond O3―H4?O5 weakens slightly. Simulated electron absorption and fluorescence spectra are agreement with the experimental data. The noncovalent interaction analysis displays that the intermolecular hydrogen bonds of MQ are obviously stronger than that of MBQ. Additionally, the energy profile analysis via the proton transfer reaction pathway illustrates that the ESIPT reaction of MBQ is relatively harder than that of MQ. Therefore, the effect of benzo‐annelation of the MQ dye weakens the intermolecular hydrogen bond and relatively inhibits the proton transfer reaction.  相似文献   

7.
The kinetics of (salen)MnIII complexes catalysed oxidation of aryl methyl and alkyl phenyl sulphides with hydrogen peroxide have been investigated at 25°C in 80% acetonitrile – 20% water spectrophotometrically. The reaction follows first‐order kinetics in (salen)MnIII complex and zero‐order kinetics in hydrogen peroxide. The order of the reaction with respect to sulphide is fractional and saturation in reaction rate occurs at higher sulphide concentrations. The pseudo first‐order rate constants have been analysed as per Michaelis–Menten kinetics to obtain the values of k2, the oxidant‐substrate complex decomposition rate constant, and K, the oxidant‐substrate complex formation constant. The effects of nitrogenous bases, free radical inhibitor and changes in solvent composition have also been studied. A suitable mechanism, supported by electronic‐oxidant and electronic‐substrate effect studies, involving a manganese(III)‐hydroperoxide complex as reactive species has been proposed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
1H NMR studies in DMSO‐d6 of the reaction of benzyltriflones, 2 , with 4,6‐dinitrobenzofuroxan, 4 , indicate the formation, with or without the presence of added base, of anionic σ‐adducts. Spectra obtained from solutions of 2 and 4‐nitrobenzofurazan, 6a , in the presence of triethylamine are consistent with products formed by the elimination of trifluoromethylsulfinic acid from σ‐adducts initially formed by carbanion attack at the 5‐position of 6a . Kinetic studies of the latter reaction in methanol allow the determination of rate constants for nucleophilic attack by the carbanions at the 5‐position. The low value of β for these reactions together with the failure to observe reaction with 1,3,5‐trinitrobenzene suggest that the benzyltriflone anions have unusually large steric requirements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Solvent, temperature, and high pressure influence on the rate constant of homo‐Diels–Alder cycloaddition reactions of the very active hetero‐dienophile, 4‐phenyl‐1,2,4‐triazolin‐3,5‐dione (1), with the very inactive unconjugated diene, bicyclo[2,2,1]hepta‐2,5‐diene (2), and of 1 with some substituted anthracenes have been studied. The rate constants change amounts to about seven orders of magnitude: from 3.95.10?3 for reaction (1+2) to 12200 L mol?1 s?1 for reaction of 1 with 9,10‐dimethylanthracene (4e) in toluene solution at 298 K. A comparison of the reactivity (ln k2) and the heat of reactions (?r‐nH) of maleic anhydride, tetracyanoethylene and of 1 with several dienes has been performed. The heat of reaction (1+2) is ?218 ± 2 kJ mol?1, of 1 with 9,10‐dimethylanthracene ?117.8 ± 0.7 kJ mol?1, and of 1 with 9,10‐dimethoxyanthracene ?91.6 ±0.2 kJ mol?1. From these data, it follows that the exothermicity of reaction (1+2) is higher than that with 1,3‐butadiene. However, the heat of reaction of 9,10‐dimethylanthracene with 1 (?117.8 kJ mol?1) is nearly the same as that found for the reaction with the structural C=C counterpart, N‐phenylmaleimide (?117.0 kJ mol?1). Since the energy of the N=N bond is considerably lower (418 kJ/bond) than that of the C=C bond (611 kJ/bond), it was proposed that this difference in the bond energy can generate a lower barrier of activation in the Diels–Alder cycloaddition reaction with 1. Linear correlation (R = 0.94) of the solvent effect on the rate constants of reaction (1+2) and on the heat of solution of 1 has been observed. The ratio of the volume of activation (?V) and the volume of reaction (?Vr‐n) of the homo‐Diels–Alder reaction (1+2) is considered as “normal”: ?V/?Vr‐n = ?25.1/?30.95 = 0.81. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The effect of halogen‐substituent on hydrogen abstraction mechanisms was studied by applying density functional theory functional calculations to the gas‐phase reactions between CHCl?? and CH4 ? nXn (X = H, F, Cl; n = 0–3), and it is found that a heavier X substituent in the substrate results in a greater stabilization of corresponding complex, a lower activation energy, a faster H‐abstraction reaction, and greater exothermicity. However, CH4– reaction is more reactive than CH3F– reaction under the same condition because of dominant π‐donation from the electronegative F atom. We also explored the reactivity difference for the seven reactions in terms of factors derived from bond order, second‐order perturbative energy, and activation strain model analysis. The rate constants are evaluated over a wide temperature range of 298–1000 K by the conventional transition state theory. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The relative intensity of Kα/Kβ for cobalt in thick targets with cobalt mass densities from 0.51 to 22.49% has been measured by the wavelength dispersive x‐ray fluorescence (XRF) spectrometer. The measuring conditions are: tube current ranging from 10 to 60 mA and voltages ranging from 20 to 60 kV. We plotted the Kα/Kβ ratio vs Co densities for different tube voltages and currents. Our study shows that the Kα/Kβ ratio is below the theoretical value for low Co densities and it increases with increasing Co density. For higher x‐ray energies, the Kα/Kβ ratio shows a sharp growth at the special density and then reaches a nearly constant value. However, Kα/Kβ ratio is theoretically constant and independent of energy in thin target measurements. The changes of this ratio according to the x‐ray energy and the element density have been studied in thick target measurements. The results provide experimental evidence to suggest that exciting energy and element density can indeed affect the Kα/Kβ ratio. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
13.
The hydrogen absorption behavior of Laves phase Ho1−xTixCo2 (x=0.1-0.6) alloys has been investigated by pressure-concentration (PC) isotherms and cyclic-, temperature- and pressure-dependent absorption kinetics. The PC isotherms and kinetics of hydrogen absorption have been studied in the pressure range 0.01-1 bar and temperature range 50-200 °C using Sievert's-type apparatus. The drastic changes in the induction period and particle size during the activation process have been discussed based on the kinetics of repeated hydrogenation cycles and scanning electron microscopy (SEM) images of the hydrides at different hydriding cycles, respectively. The experimental results of kinetic curves are interpreted using the Johnson-Mehl-Avrami (JMA) model, and the reaction order and reaction rate have been determined. The α-, (α+β)- and β-phase regions in Ho1−xTixCo2-H have been identified from the different slope regions of the first-order-type kinetic plots. The dependence of the reaction rate parameter on hydriding pressure and temperature in the (α+β)-phase region has been discussed.  相似文献   

14.
The aminolysis reaction of a series of β‐lactams in the presence of poly(ethyleneimine) (PEI) at 30°C and pH = 8.40 has been studied. The substrates investigated follow a pseudo first order rate, except two β‐lactams which show a two step consecutive reaction. Increasing the polyelectrolyte concentration, Michaelis–Menten type kinetics are been observed and for four substrates a more complex rate behaviour was verified owing to the polyelectrolyte inhibition effect. Both the binding constant K1 between polyelelectrolyte and β‐lactam and the first order rate constant of the reactive complex decomposition kcat were calculated. The substituent effect at C‐6′ or C‐7′ position of β‐lactam on the aminolysis rate does not correlate with the σI value (Taft plot). Most probably, steric and electronic effects are important, but the electrostatic ones are determining factors for the relevant acceleration attributable to both the binding phenomena and the increased reactivity of the substrate–polyelectrolyte complex. The comparison between poly(ethyleneimine) and Human Serum Albumin (HSA) is also discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A classical study for constructing potential energy surface from ab initio electronic energy of molecular fragments was presented for HCN? + H reaction and deuterated analogues. The classical trajectory was studied on this surface to determine the reaction probability. Reaction probability was used to calculate others observable properties like rate constant and cross section. Rate constants expressions were reported for all reactions. Influence of translation energy of fragments on the reaction probability and reaction cross section was also studied. Nonlinear least-squares fitting was also used to calculate the rate constants expressions. Deuterium was used instead of hydrogen atom to observe the effect of mass of attacking atoms and target molecule on the reaction probability and reaction rate.  相似文献   

16.
Silk fabrics from Bombyx mori silkworm were grafted with 2‐hydroxyethyl methacrylate (HEMA) as well as a binary system of HEMA and 4‐hydroxybutyl acrylate (HBA) and then analysed by Raman and infrared (IR) spectroscopy to elucidate the interactions between the components and their possible conformational changes. The samples were then dissolved in trifluoroacetic acid and electrospun; the influence of the grafted polymers on the silk fibroin rearrangements upon these treatments was investigated by vibrational spectroscopy. Upon grafting, the fabrics underwent conformational rearrangements towards a more unordered state, although they kept their prevailing β‐sheet conformation; also the polymeric component underwent hydrogen bonding and backbone rearrangements upon interaction with silk fibroin and the occurrence of strong covalent bonds cannot be excluded. By immersing the as‐electrospun grafted and pure fibroin nanofibres (prevalently unordered) in aqueous methanol, they partially recovered the β‐sheet content observed in the corresponding starting fabrics; the percentage of recovery decreased along the series: pure silk > HEMA‐grafted silk > HEMA and HBA‐grafted silk. This trend suggests that the presence of the polyHEMA grafted component hinders the silk fibroin recrystallization into β‐sheet upon aqueous methanol treatment; moreover, the addition of the more sterically hindered HBA monomer in the grafting system further prevented this process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Three new ketone functionalized N‐alkoxyamines derived from 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO) were prepared: N‐(1‐phenylpropyloxy)‐2,2,6,6‐tetramethylpiperidin‐4‐one, 1‐phenyl‐1‐(2,2,6,6‐tetramethylpiperidinoxy)propanone, 1‐phenyl‐1‐(4‐oxo‐2,2,6,6‐tetramethylpiperidinoxy)propanone. The rate constants of C‐ON bonds homolysis in the synthesized alkoxyamines were determined over a range of temperatures via nitroxide‐exchange experiments using HPLC to monitor the concentration. The Arrhenius parameters of homolysis for the investigated alkoxyamines were determined (lnA, Ea). Homolytic bond dissociation energies (BDE) of the C‐ON bond in the synthesized compounds were determined from quantum‐mechanical calculations at the B3‐LYP/6‐31G(d) and BMK/6‐311+G(3df,2p) levels. Ketone functionalization of the alkyl fragment of alkoxyamine in β position dramatically increases the rate constant of homolysis (by a factor of ca. 500 at the temperature of 363 K) suggesting that the new ketone functionalized N‐alkoxyamines should be effective as C‐radical precursor and unimolecular initiators in NMRP at lower temperatures than the alkoxyamines applied earlier. The analyses of natural bond, frontal orbitals and spin distribution indicated that the decrease in the strength of C‐ON bonds in ketone fuctionalized alkoxyamines in the alkyl fragment predominantly originates from a substantially smaller HOMO–LUMO gap and more delocalized spin density in leaving alkyl radicals as compared with unfunctionalized alkoxyamines. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The powder sample of nickel oxide was synthesized by sol-gel procedure. The isothermal reduction of nickel oxide using hydrogen was investigated by thermogravimetric analysis at five operating temperatures: 245, 255, 265, 275 and 300 °C. The kinetic triplet (Ea, A and f(α)) was determined using conventional and Weibull kinetic analysis. Both the kinetically procedures show that the reduction process considered can be explained with a two-step kinetic model. It is established that at lower temperatures (245 °C?T?255 °C), the reduction process considered is governed by two-parameter Šesták-Berggren autocatalytic model (first step) and at higher temperatures (T?265 °C), the reduction process is governed by Fn reaction model with different values of parameter n (second step). In this paper, the complex manner of dependence of the Weibull shape parameter (β) on temperature is established. With alterations of Weibull shape parameter from lower temperatures (β>1) to higher temperatures (β<1), it was concluded that isothermal reduction process of NiO using hydrogen can be described by a multistep reaction mechanism. These results are confirmed by the evaluated density distribution functions (ddf) of apparent activation energies (Ea), which show variations in basic characteristics at lower and higher operating temperature regions. Also, in this paper, it was shown that the shape parameter (β) of Weibull distribution function can represent the behaviour index, which indicates the kinetic pattern of the mechanism controlling the process studied.  相似文献   

19.
Kinetics of reactions of di‐n‐butylzinc, n‐Bu2Zn, and mixed n‐butyl(substituted phenyl)zinc reagents and n‐Bu(functional group (FG)?C6H4)Zn with benzoyl chloride in the presence of tri‐n‐butylphosphine have been investigated. Reaction rates of transferable n‐butyl group have been determined in tetrahydrofuran at 0 °C to compare the transfer rate of n‐butyl group in homo and mixed diorganozincs. Rate law is consistent with a third‐order reaction, which is first order in diorganozinc, benzoyl chloride, and n‐Bu3P, and a mechanism was proposed. The lower reaction rate of n‐BuPhZn than that of n‐Bu2Zn and negative reaction constant in Hammett plot are in accordance with the carbanionic charge of transferable n‐butyl group in the acylation reaction. These findings support the hypothesis that the reaction rate of transferable group, RT, changes depending upon the residual group, RR, in RRRTZn reagents. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The hydrogen abstraction of CH3OH by C2 (A3Π u ) has been investigated by direct ab initio dynamics over a wide temperature range 200–3000?K. The potential energy surfaces (PESs) have been constructed at the UCCSD(T)/aug-cc-pVTZ//UMP2/6-311++G(d,p) levels of theory. Two different hydrogen abstractions on the methyl and hydroxyl sites of methanol are considered. For the methyl H-abstraction, it is essentially a hydrogen atom transfer (HAT), whereas the hydroxyl site H-abstraction is better described as a proton coupled electron transfer (PCET) according to the Natural Bond Orbital (NBO) analysis. The results suggest that the methyl site reaction is dominant, and the calculated rate constants are roughly consistent with available experimental values. On the other hand, the temperature dependence of deuterium kinetic isotope effects (KIEs) analysis reveals a substantial normal isotope effect in the methyl H-abstraction process, while normal and inverse KIEs coexist in the hydroxyl H-abstraction channel. Furthermore, the three and four–parameter expressions of Arrhenius rate constants are also provided within 200–3000?K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号