首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The effect of surface stress on the propagation of Lamb waves   总被引:1,自引:0,他引:1  
A. Chakraborty 《Ultrasonics》2010,50(7):645-649
This work investigates the possibility of the propagation of Lamb waves in thin solid layers with external traction free surfaces, in the presence of surface elasticity, inertia and residual stress. It is demonstrated that such waves do exist and that their characteristics can be quite different from their classical counterparts. The governing equations with non-classical boundary conditions involving the bulk and surface stress are solved exactly in the frequency-wavenumber domain. This solution is utilized to compute the Lamb wave modes for different layer thicknesses. An efficient strategy to capture all the modes of Lamb waves within a given frequency window is outlined. It is shown that the effect of surface elasticity and inertia becomes significant with increasing frequency and decreasing layer thickness, where the number of modes participating within a given frequency window is more than that permitted by the classical theory. Further, it is observed that the nature of the Lamb wave modes (in terms of negative dispersion) in the presence of surface stress is similar to what predicted by the nonlocal theory and microstructure based continuum theory.  相似文献   

2.
The propagation of Lamb waves in a plate bordered with layers of a liquid.   总被引:2,自引:0,他引:2  
The influence of liquid layers on the propagation of Lamb waves in a plate of finite thickness is studied theoretically. The dispersion equations of Lamb waves in a plate bordered with layers of liquids are derived. Numerical solutions of the equations show that the phase velocity of Lamb waves changes with the thickness of the liquid layers. For the lowest antisymmetrical mode of very thin plates, the numerical results calculated from the dispersion equations are compared with those derived from the bending wave acoustic impedance approach. The limitation of the latter is discussed. Applications of Lamb waves pertinent to biosensing are also presented.  相似文献   

3.
两侧有固体层负载时板中Lamb波的传播   总被引:2,自引:0,他引:2       下载免费PDF全文
本文研究了薄板二面有固体导负载时板中Lamb波的传播,从弹性波理论出发并结合应的边界条件,导出板中Lamb波的色散方程,数值计算表示,不管作为自由状态时板中Lamb波相速(板厚取定时)是大于或小于外层固体的声表面波波速,板中对称及反对称模式的Lamb波相速都随着外层固体层厚度增加而变化并且渐近于外层固体的声表面波波速,数值计算又表明,对很薄的板,板中对称及反对称模式的相速均随负载板的厚度呈线性变化  相似文献   

4.
In this paper the asymptotic method has been applied to investigate propagation of generalized thermoelastic waves in an infinite homogenous isotropic plate. The governing equations for the extensional, transversal and flexural motions are derived from the system of three-dimensional dynamical equations of linear theories of generalized thermoelasticity. The asymptotic operator plate model for extensional and flexural free vibrations in a homogenous thermoelastic plate leads to sixth and fifth degree polynomial secular equations, respectively. These secular equations govern frequency and phase velocity of various possible modes of wave propagation at all wavelengths. The velocity dispersion equations for extensional and flexural wave motion are deduced from the three-dimensional analog of Rayleigh-Lamb frequency equation for thermoelastic plate. The approximation for long and short waves along with expression for group velocity has also been obtained. The Rayleigh-Lamb frequency equations for the considered plate are expanded in power series in order to obtain polynomial frequency and velocity dispersion relations and its equivalence established with that of asymptotic method. The numeric values for phase velocity, group velocity and attenuation coefficients has also been obtained using MATHCAD software and are shown graphically for extensional and flexural waves in generalized theories of thermoelastic plate for solid helium material.  相似文献   

5.
该文运用解析的方式推导了考虑声波衰减时兰姆波二次谐波的累积和传播规律,并用半解析方式将该理论推广到缓慢变厚度板的情况。由于色散特性,兰姆波二次谐波和基频波相速度不匹配,传播通常会产生拍频效应,使得二次谐波的振幅沿着传播距离周期性的归零。当考虑声波衰减或板的厚度缓慢变化的情况时,拍频效应将不再严格地被满足。二次谐波的振幅依然会沿着传播距离而振荡,但不会归零。该研究可以用于分析如何高效地激发和接收兰姆波的二次谐波,表征和评估不同厚度变化的结构中的微观结构损伤。  相似文献   

6.
We study the propagation of thickness-stretch waves in a piezoelectric plate of polarized ceramics with thickness poling or crystals of class 6 mm whose sixfold axis is along the plate thickness. For device applications we consider long waves with wavelengths much longer than the plate thickness. A system of two-dimensional equations in the literature governing thickness-stretch, extensional, and symmetric thickness-shear motions of the plate is further simplified. The equations obtained can be used to analyze piezoelectric plate acoustic wave devices operating with thickness-stretch modes.  相似文献   

7.
In this paper, surface effects on the dispersion characteristics of elastic waves propagating in an infinite piezoelectric nanoplate are investigated by using the surface piezoelectricity model. Based on the surface piezoelectric constitutive theory, the presence of surface stresses and surface electric displacements exerting on the boundary conditions of the piezoelectric nanoplate is taken into account in the modified mechanical and electric equilibrium relations. The partial wave technique is employed to obtain the general solutions of governing equations, and the dispersion relations with surface effects are expressed in an explicit closed form. The impacts of surface piezoelectricity, residual surface stress and plate thickness on the propagation properties of elastic waves are analyzed in detail. Numerical results show that the dispersion behaviors in piezoelectric nanoplates are size-dependent, and there exists a critical plate thickness above which the surface effects may vanish.  相似文献   

8.
铝板中Lamb波检测的实验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
Lamb波在传播过程中具有频散及多模态特性,若相关参数选择不当,会导致在实际应用中信号相互叠加而无法识别。本文基于Lamb波的频散曲线是其频散方程实数解分布的特点,采用二分法绘制了铝板中Lamb波的频散曲线、波结构曲线和入射角曲线。根据曲线选择S0模态的Lamb波对1mm厚铝板中不同类型的缺陷进行检测。实验结果表明,S0模态的Lamb波对裂纹型缺陷和贯穿型缺陷十分敏感,但对于裂纹型缺陷,其幅值变化并不与缺陷大小成线性关系,并且S0模态Lamb波的声场指向性十分集中,在偏离声束轴线时无法检测到缺陷。  相似文献   

9.
该文针对我国高速铁路轨道板缺陷的非接触动态检测问题,研究了空气耦合超声兰姆波在轨道板中的传播规律。首先,给出了轨道板中超声兰姆波的相速度和群速度频散曲线,结果表明:随着频厚积的增加,频散现象越明显,并且A0相速度收敛于Rayleigh波的波速。然后,建立轨道板中波传播的有限元模型,计算得到兰姆波传播的群速度为2220 m/s,且二维傅里叶变换系数的较大值沿Rayleigh波的频散曲线分布。最后,在沪杭高铁嘉兴南站进行了现场测试,以8.8°倾斜角向轨道板激励产生超声兰姆波,激发产生的兰姆波模态群速度为2325 m/s,且二维傅里叶变换分析其系数的较大值沿Rayleigh波的频散曲线分布。有限元计算结果和实验结果均与理论计算结果一致。该研究为后续轨道板缺陷的非接触动态检测提供了理论依据和实验方法。  相似文献   

10.
功能梯度板中的兰姆波的传播在实际工程中有着非常广泛的应用。采用层状模型研究了兰姆波在材料特性沿厚度方向连续变化的功能梯度板中的传播特性。通过数值计算获得了层状板中兰姆波的色散关系,并与已有结果进行了比较,获得了材料属性沿厚度方向呈指数变化和多项式变化时功能梯度板中兰姆波的波速和位移解。当材料属性连续变化时,兰姆波各阶模态的波速与位移都将发生变化。相比于兰姆波的高阶模态,低阶模态的波速变化更加明显。本文的研究可为功能梯度板的设计提供参考。  相似文献   

11.
An inhomogeneous layer element method is presented to analyze the dispersion of waves and characteristic wave surfaces in plates of functionally graded piezoelectric material (FGPM). In this method, the FGPM plate is divided into a number of layered elements. The elemental elastic and electric properties are assumed as linear functions of the thickness to adopt the variety of the material property of FGPM. The Hamilton principle is applied to determine the governing equations. The phase velocity surface, phase slowness surface, phase wave surface, group velocity surface, group slowness surface, and group wave surface for FGPM plate are formulated using Rayleigh quotient and the orthogonality condition of the eigenvectors. These six surfaces are then used to illustrate the characteristics of waves in FGPM plates. Numerical examples are presented using the present formulations to analyze dispersions and characteristics of waves in FGPM plates.  相似文献   

12.
On the fact that an isotropic metal solid produces anisotropic property in the state of static stress, based on the theory of the nonlinear acoustoelasticity, the equivalent second order elastic constants are calculated for metal plate with static stress. For the case of thin metal plate with stress, the two kinds of dispersion equation for Lamb waves propagating parallel and vertical to the direction of static stress are derived. Using the equations, the relationships between Lamb wave velocity and static stress in a metal plate are discussed.  相似文献   

13.
The present investigation is concerned with the flexural and transversal wave motion in an infinite, transversely isotropic, thermoelastic plate by asymptotic method. The governing equations for the flexural and transversal motions have been derived from the system of three-dimensional dynamical equations of linear theory of coupled thermoelasticity. The asymptotic operator plate model for free vibrations; both flexural and transversal, in a homogenous thermoelastic plate leads to fifth degree and cubic polynomial secular equations, respectively, that governs frequency and phase velocity of various possible modes of wave propagation at all wavelengths. All the coefficients of differential operator have been expressed as explicit functions of the material parameters. The velocity dispersion equations for the flexural and transversal wave motion have been deduced from the three-dimensional analog of Rayleigh-Lamb frequency equation for thermoelastic plate waves. The approximations for long and short waves and expression for group velocity have also been derived. The thermoelastic Rayleigh-Lamb frequency equations for the considered plate are expanded in power series in order to obtain polynomial frequency and velocity dispersion relations whose equivalence is established with that of asymptotic method. The dispersion curves for phase velocity, group velocity and attenuation coefficient of various flexural and transversal wave modes are shown graphically for aluminum-epoxy material elastic and thermoelastic plates.  相似文献   

14.
We analyze the effect of second-harmonic generation(SHG) of primary Lamb wave propagation in a two-layered composite plate, and then investigate the influence of interfacial properties on the said effect at low frequency. It is found that changes in the interfacial properties essentially affect the dispersion relation and then the maximum cumulative distance of the double-frequency Lamb wave generated. This will remarkably influence the efficiency of SHG. To overcome the complications arising from the inherent dispersion and multimode natures in analyzing the SHG effect of Lamb waves, the present work focuses on the analysis of the SHG effect of low-frequency dilatational Lamb wave propagation. Both the numerical analysis and finite element simulation indicate that the SHG effect of low-frequency dilatational Lamb wave propagation is found to be much more sensitive to changes in the interfacial properties than primary Lamb waves. The potential of using the SHG effect of low-frequency dilatational Lamb waves to characterize a minor change in the interfacial properties is analyzed.  相似文献   

15.
Son MS  Kang YJ 《Ultrasonics》2011,51(4):489-495
This study analytically investigates the propagation of shear waves (SH waves) in a coupled plate consisting of a piezoelectric layer and an elastic layer with initial stress. The piezoelectric material is polarized in z-axis direction and perfectly bonded to an elastic layer. The mechanical displacement and electrical potential function are derived for the piezoelectric coupled plates by solving the electromechanical field equations. The effects of the thickness ratio and the initial stress on the dispersion relations and the phase and group velocities are obtained for electrically open and mechanically free situations. The numerical examples are provided to illustrate graphically the variations of the phase and group velocities versus the wave number for the different layers comparatively. It is seen that the phase velocity of SH waves decreases with the increase of the magnitude of the initial compression stress, while it increases with the increase of the magnitude of the initial tensile stress. The initial stress has a great effect on the propagation of SH waves with the decrease of the thickness ratio. This research is theoretically useful for the design of surface acoustic wave (SAW) devices with high performance.  相似文献   

16.
Abstract

The Lamb wave dispersion in a PZT/Metal/PZT sandwich plate is investigated by employing the exact linear equations of electro-elastic waves in piezoelectric materials within the scope of the plane-strain state. It is assumed that at the interfaces between the piezoelectric face layers and metal core layer, shear-spring and normal-spring type imperfect conditions are satisfied. The degree of this imperfectness is estimated through the corresponding shear-spring and normal-spring type parameters which appear in the contact condition characterizing the transverse and normal displacements’ discontinuity. The corresponding dispersion equation is derived, and as a result of the numerical solution to this equation, the dispersion curves are constructed for the first and second lowest modes in the cases where the material of the face layers is PZT and the material of the middle layer is Steel (St). Consequently, for the PZT/St/PZT sandwich plate, the study of the influence of the problem parameters such as the piezoelectric and dielectric constants, layer thickness ratios, non-dimensional shear-spring, and normal-spring type parameters, is carried out. In particular, it is established that the imperfectness of the contact between the layers of the plate causes a decrease in the values of the wave propagation velocity.  相似文献   

17.
The propagation of thermoelastic waves in homogeneous isotropic plate subjected to stress-free and rigid insulated and isothermal conditions is investigated in the context of conventional coupled thermoelasticity (CT), Lord-Shulman (LS), Green-Lindsay (GL), and Green-Nagdhi (GN) theories of thermoelasticity. Secular equations for the plate in closed form and isolated mathematical conditions for symmetric and skew-symmetric wave mode propagation in completely separate terms are derived. It is shown that the motion for SH modes gets decoupled from the rest of the motion and remains unaffected due to thermo-mechanical coupling and thermal relaxation effects. The phase velocities for SH modes have also been obtained. The results for coupled and uncoupled theories of thermoelasticity have been obtained as particular cases from the derived secular equations. At short wavelength limits the secular equations for symmetric and skew-symmetric waves in a stress-free insulated and isothermal plate reduce to Rayleigh surface waves frequency equations. Finally, the numerical solution is carried out for aluminum-epoxy composite material and the dispersion curves for symmetric and skew-symmetric wave modes are presented to illustrate and compare the theoretical results.  相似文献   

18.
The propagation and acousto-optic interaction of Lamb modes in an anisotropic plate of tellurium dioxide (TeO2) are studied numerically and analytically. In the case of a Y-cut X-propagating TeO2 plate, the very high elastic anisotropy of the crystal greatly modifies the dispersion curves, giving rise to their multiple oscillations. The existence ranges of backward Lamb modes increase with the mode order contrary to the case of isotropic plates. The quasi-collinear light scattering by Lamb waves is considered. Owing to the structure of Lamb wave field, a simultaneous light diffraction at two different optical frequencies can take place while Lamb waves are excited only at the single frequency. It is demonstrated with the Z-cut (110)-propagating plate that a small change in the acoustic frequency can result in a significant shift in the frequency of the scattered light.  相似文献   

19.
The effect of anisotropy and temperature on the dispersive Lamb wave generation and propagation in a transversely isotropic thin plate has been investigated. A quantitative numerical model for the laser-generated transient ultrasonic Lamb waves propagating along arbitrary directions is presented by using a finite-element method. All factors, such as spatial and time distributions of the incident laser beam, optical penetration, thermal diffusivity, thickness of the plate, and source–receiver distance, can be taken into account. The effects on the ultrasound waveform of the size of the optoacoustic source are investigated; in the limit of strong optical absorption, a subsurface thermal source gives rise to both vertical and lateral shear tensions. The lateral shear tension is equivalent to applying a shear dipole at the top face; the amplitude of the dipole is a function of material symmetry, contrary to the isotropic case, and the character and strength of the equivalent surface stress are a function of propagation direction. The specific results for the lower anti-symmetric and symmetric mode propagation in all planar directions are presented in the thermoelastic regime; the spatial dispersion (variation of the velocity with the direction of propagation) as well as the frequency dispersion is analyzed. PACS 43.35.+d; 02.70.Dh; 42.62.-b; 78.20.Nv; 81.70.Cv  相似文献   

20.
ABSTRACT

This article investigates wave propagation behavior of a multi-phase nanocrystalline nanobeam subjected to a longitudinal magnetic field in the framework of nonlocal couple stress and surface elasticity theories. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, couple stress and surface effects are omitted. Hamilton’s principle is employed to derive the governing equations which are solved by applying an analytical method. The frequencies are compared with those of nonlocal and couple stress-based beams. It is showed that wave frequencies and phase velocities of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, magnetic field, surface effect and nonlocality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号