首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present results of correlated pseudopotential calculations of an exciton in a pair of vertically stacked InGaAs/GaAs dots. Competing effects of strain, geometry, and band mixing lead to many unexpected features missing in contemporary models. The first four excitonic states are all optically active at small interdot separation, due to the broken symmetry of the single-particle states. We quantify the degree of entanglement of the exciton wave functions and show its sensitivity to interdot separation. We suggest ways to spectroscopically identify and maximize the entanglement of exciton states.  相似文献   

2.
Nucleation and annihilation of vortex states have been studied in two-dimensional arrays of densely packed cobalt dots. A clear signature of dipolar interactions both between single-domain state dots and vortex state dots has been observed from the dependence of vortex nucleation and annihilation fields on interdot separation. A direct consequence of these interactions is the formation of vortex chains as well as dipole chains aligned along the direction of the external field. In addition, short range correlation of chiralities within vortex chains has been observed using magnetic force microscopy imaging and has been attributed to cross-talking between adjacent elements.  相似文献   

3.
Based on the effective-mass approximation, we have calculated the donor binding energy of a hydrogenic impurity in zinc-blende (ZB) GaN/AlN coupled quantum dots (QDs) using a variational method. Numerical results show that the donor binding energy is highly dependent on the impurity position and coupled QDs structural parameters. The donor binding energy is largest when the impurity is located at the center of quantum dot. When the impurity is located at the interdot barrier edge, the donor binding energy has a minimum value with increasing the interdot barrier width.  相似文献   

4.
By means of the slave-boson mean-field approximation, we theoretically investigate the Kondo and Coulomb interaction effects in spin-polarized transport through two coupled quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The density of states is calculated in the Kondo regime for the effect of the interdot Coulomb repulsion with both parallel and antiparallel lead-polarization alignments. Our results reveal that the interdot Coulomb interaction between quantum dots greatly influence the density of states of the dots.  相似文献   

5.
We report the direct observation of quantum coupling in individual quantum dot molecules and its manipulation using static electric fields. A pronounced anticrossing of different excitonic transitions is observed as the electric field is tuned. A comparison of our experimental results with theory shows that the observed anticrossing occurs between excitons with predominant spatially direct and indirect character and reveals a field driven transition of the nature of the molecular ground state exciton wave function. Finally, the interdot quantum coupling strength is deduced optically and its dependence on the interdot separation is calculated.  相似文献   

6.
丁国辉  叶飞 《中国物理快报》2007,24(10):2926-2929
We investigate electronic transport through a parallel double quantum dot (DQD) system with strong on-site Coulomb interaction, as well as the interdot tunnelling. By applying numerical renormalization group method, the ground state of the system and the transmission probability at zero temperature are obtained. For a system of quantum dots with degenerate energy levels and small interdot tunnel coupling, the spin correlations between the DQDs is ferromagnetic, and the ground state of the system is a spin-1 triplet state. The linear conductance will reach the unitary limit (2e^2/h) due to the Kondo effect at low temperature. As the interdot tunnel coupling increases, there is a quantum phase transition from ferromagnetic to anti-ferromagnetic spin correlation in DQDs and the linear conductance is strongly suppressed.  相似文献   

7.
Hui Pan  Su-Qing Duan 《Physics letters. A》2009,373(14):1294-1300
AC field-controlled Andreev tunneling through two serially-coupled quantum dots are investigated theoretically by using the nonequilibrium Green's function method. The photon-assisted Andreev tunneling is studied in detail. It is found that the average current depends distinctly on the interdot coupling. In the weak interdot coupling case, the average current versus the gate voltage exhibit negative peaks on the left-hand side and positive peaks on the right-hand side of the Fermi level. However, in the strong interdot coupling case, the current exhibit both negative and positive peaks on each side of the Fermi level. Furthermore, the system can function as an electron pump capable of transporting electrons through the resonant photon-assisted Andreev tunneling.  相似文献   

8.
We study the conductance through finite Aharonov-Bohm rings of interacting electrons weakly coupled to non-interacting leads at two arbitrary sites. This model can describe an array of quantum dots with a large charging energy compared to the interdot overlap. As a consequence of the spin-charge separation, which occurs in these highly correlated systems, the transmittance is shown to present pronounced dips for particular values of the magnetic flux piercing the ring. We analyze this effect by numerical and analytical means and show that the zero-temperature equilibrium conductance in fact presents these striking features which could be observed experimentally.  相似文献   

9.
We study electron tunnelling through two small ferromagnetic dots. Quantum charge fluctuations and interdot coupling cause each Coulomb peak of conductance at zero interdot coupling to split. The interdot tunnel coupling depends on the relative orientation of magnetizations of the two dots, leading to different splitting energies of the Coulomb peaks in parallel and antiparallel magnetization alignments. As a result, a very large tunnelling magnetoresistance occurs near the Coulomb peaks, and its sign may be either positive or negative.  相似文献   

10.
The dipole modes of non-parabolic quantum dots are studied by means of their current and density patterns as well as with their local absorption distribution. The anticrossing of the so-called Bernstein modes originates from the coupling with electron-hole excitations of the two Landau bands which are occupied at the corresponding magnetic fields. Non-quadratic terms in the potential cause an energy separation between bulk and edge current modes in the anticrossing region. On a local scale the fragmented peaks absorb energy in complementary spatial regions which evolve with the magnetic field. Received 3 December 2001 / Received in final form 5 April 2002 Published online 9 July 2002  相似文献   

11.
Motivated by the far-infrared transmission experiments of Demel et al., we have investigated the magnetoplasmon excitations in an array of quantum dots within the Thomas–Fermi–Dirac–von Weizsäcker (TFDW) approximation. Detailed calculations of the magnetic dispersion and power absorption from a uniform radiation field unambiguously demonstrates that the noncircular symmetry of the individual dots is responsible for the anticrossing behaviour observed in the experiments. The interdot Coulomb interaction is unimportant at the interdot separation of the samples studied.  相似文献   

12.
吴绍全  陈佳峰  赵国平 《物理学报》2012,61(8):87203-087203
从理论上研究了串型耦合双量子点之间库仑作用对其近藤共振的影响. 采用非平衡态格林函数和奴役玻色子平均场近似方法求解了系统的哈密顿量; 计算了系统电子的态密度、透射率、占居数和近藤温度随双量子点之间库仑作用能的变化, 同时也计算了电极处于极化时双量子点之间库仑作用能对系统电子态密度的影响. 结果表明,双量子点之间库仑作用能够极大地影响系统的基态物理性质. 同时还对相关的物理问题进行了讨论.  相似文献   

13.
The electrical conductance, the thermal conductance, the thermopower and the thermoelectrical figure of merit are analyzed through a double quantum dot system weakly coupled to metal electrodes, by means of density matrix approach. The effects of interdot tunneling, intra- and interdot Coulomb repulsions on the figure of merit are examined. Results show that increase of interdot tunneling gives rise to a reduction in figure of merit. On the other hand, increase of Coulomb repulsion results in enhancement of figure of merit because of reduce of bipolar effect.  相似文献   

14.
We report a measurement of linear conductance through a series double dot as a function of the total double dot charge and the charge difference for interdot tunnel conductances between zero and one mode. The dots are defined by ten independently tunable electrostatic gates on the surface of a GaAs/AlGaAs heterostructure to allow separate adjustment of dot charge and interdot conductance. For weak interdot tunneling the measured double dot conductance agrees with a transport model in which each dot is individually governed by Coulomb blockade theory. As interdot tunnel conductance increases toward one mode, the measured conductance peak positions and shapes indicate both a relaxation of the charge quantization condition for individual dots and quantum mechanical charge sharing between dots. The results are in quantitative agreement with many body charge fluctuation theory.  相似文献   

15.
We theoretically investigate the properties of the ground state of the strongly correlated T-shaped double quantum dots embedded in an Aharonov-Bohm ring in the Kondo regime by means of the one-impurity Anderson Hamiltonian. It is found that in this system, the persistent current depends sensitively on the parity and size of the ring. With the increase of interdot coupling, the persistent current is suppressed due to the enhancing Fano interference weakening the Kondo effect. Moreover, when the spin of quantum dot embedded in the Aharonov- Bohm ring is screened, the persistent current peak is not affected by interdot coupling. Thus this model may be a new candidate for detecting Kondo screening cloud.  相似文献   

16.
考虑半导体量子点间隧穿耦合效应,研究非对称半导体三量子点分子中的弱探测光的传播特性。线性情况下,由于点间隧穿耦合和外部控制光的协同调控,探测光的吸收特性将出现共振吸收、隧穿诱导透明单窗口、隧穿诱导透明双窗口及隧穿诱导透明三窗口的转变。此外,从反常色散到正常色散的开关效应可通过改变隧穿强度及光学控制场强度来实现。对于非线性情况,发现孤子的振幅随着点间隧穿耦合系数增大呈先增大再减小随即再次增大并减小的波动变化趋势且出现最大振幅及其对应的点间隧穿耦合强度随着外部控制光场的增大而减小。此外,发现孤子的群速度随着耦合强度的增加呈逐渐减小的趋势。  相似文献   

17.
We theoretically investigate the effect of the interdot Coulomb repulsion on Kondo resonances in the series-coupled double quantum dot coupled to two ferromagnetic leads. The Hamiltonian of our system is solved by means of the slave-boson mean-field approximation, and the variation of the density of states, the transmission probability, the occupation number, and the Kondo temperature with the interdot Coulomb repulsion are discussed in the Kondo regime. The density of states is calculated for various interdot Coulomb repulsions with both parallel and antiparallel lead-polarization alignments. Our results reveal that the interdot Coulomb repulsion greatly influences the physical property of this system, and relevant underlying physics of this system is discussed.  相似文献   

18.
Magnetic microspheres are used as mobile substrates in micro-total-analysis systems (μTAS), since the particles can be selectively functionalized to attach different bioconjugates and can be precisely manipulated using external magnetic field gradients. A large number of MEMS-based bio-analytical devices employ magnetophoretic separation as an important step during their operation. An analytical technique is proposed in this paper that describes the magnetophoretic transport of magnetic microspheres under an imposed magnetic field when there is a pressure-driven or electroosmotic flow through a microchannel. Successful magnetophoretic capture occurs if the strength of the field-inducing magnetic dipole exceeds a critical value, or if the particles are larger than a critical size. The magnetophoretic separator performance is characterized in terms of capture efficiency. The analysis shows that the capture efficiency is a function of two independent non-dimensional parameters, λ and γ that in turn involve all the physical design and operating parameters of the microfluidic separator, e.g., the dipole strength, particle size and susceptibility, fluid viscosity and velocity, channel height, and the separation of the dipole. Parametric plots of capture efficiency as function of λ and γ helps in choosing the right design and operation parameter of a practical microfluidic separator for a target level of performance.  相似文献   

19.
Thermoelectric effects through a serial double quantum dot system weakly coupled to ferromagnetic leads are analyzed. Formal expressions of electrical conductance, thermal conductance, and thermal coefficient are obtained by means of Hubbard operators. The results show that although the thermopower is independent of the polarization of the leads, the figure of merit is reduced by an increase of polarization. The influences of temperature and interdot tunneling on the figure of merit are also investigated, and it is observed that increase of the interdot tunneling strength results in reduction of the figure of merit. The effect of temperature on the thermal conductance is also analyzed.  相似文献   

20.
We optically probe and electrically control a single artificial molecule containing a well defined number of electrons. Charge and spin dependent interdot quantum couplings are probed optically by adding a single electron-hole pair and detecting the emission from negatively charged exciton states. Coulomb- and Pauli-blockade effects are directly observed, and tunnel coupling and electrostatic charging energies are independently measured. The interdot quantum coupling is shown to be mediated by electron tunneling. Our results are in excellent accord with calculations that provide a complete picture of negative excitons and few-electron states in quantum dot molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号