首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of gamma irradiation in the dose range of 5-500 kGy on the optical absorption and luminescence spectra of Nd doped phosphate glass is reported. The spectral absorption of this glass before and after gamma irradiation was measured in the spectral range 300-900 nm at room temperature using spectrophotometer and synchrotron beamline. Drastic increase in absorption was noted below 600 nm after gamma irradiation, which was dependent on the dose of irradiation. Additional absorption (AA) spectra of irradiated sample shows generation of two absorption bands below 600 nm, which finally became one very broad band peak with increased intensity at irradiation dose of 500 kGy. AA spectra also show the presence of negative peaks at the location of absorption peaks of Nd3+. Photoluminescence of Nd doped phosphate glass shows two strong bands which decreases to a very low intensity with a red shift after gamma irradiation. These results indicate that irradiation produces different kinds of defects in the glass material along with conversion of valence state of Nd3+ to Nd2+. This change was found irreversible at room temperature.  相似文献   

2.
Considerable changes were observed in the X-ray diffraction pattern of ammonium zinc chloride after doping with Sr2+ in different concentrations and after irradiating with γ rays at different doses. The effect of γ-radiation and Sr2+ content on optical parameters of (NH4)2ZnCl4: x Sr2+ single crystals (x?=?0.00, 0.020, 0.039, 0.087 or 0.144?wt.%) has been investigated. The transmittance near the absorption edge of unirradiated crystals and crystals irradiated with different γ-doses has been measured, hence the absorption coefficient (α) was calculated. The values of α at room temperature increased under the influence of γ-irradiation. The rate by which α increases with photon energy just before the absorption edge is strongly inhibited by higher γ-doses. The type of intraband transition in (NH4)2ZnCl4: x Sr2+ single crystals was found to be of the allowed indirect transition, and γ-irradiation had no effect on the type of transition. The values of the optical energy gap (E g ) were calculated as a function of γ-dose. The effect of γ-irradiation was found to be more pronounced on samples doped with x?=?0.087 or 0.144?wt.% Sr2+. The results can be discussed on the basis of γ-irradiation-induced defects and Sr2+ concentration. A diagram representing probable transitions to the created bands due to irradiation could be constructed.  相似文献   

3.
Thin films of 4-tricyanovinyl-N,N-diethylaniline (TCVA) were prepared by thermal evaporation technique. The spectral and the optical parameters have been investigated by using the spectrophotometric measurements of both transmittance and reflectance at normal incidence of light in the wavelength range 200–2500 nm. The effect of γ-irradiation on the optical parameters was investigated. It was observed that the increase in γ-irradiation dose caused an increase in the value of absorption index and a shift in the spectrum towards higher wavelengths. Therefore, the value of the optical band gap has decreased from 1.45 eV for as-deposited film to 1.39 eV for film exposed to γ-ray dose of 150 kGy and Urbach tail increased. On the other hand, the dispersion parameters of TCVA films were increased with the increase of the irradiation dose.  相似文献   

4.
This paper reports that KI doped with Ce3+ or double doped with Tb3+ and Ce3+ were prepared by the Bridgman-Stockbarger method and characterized by optical absorption photoluminescence (PL), thermoluminescence (TL), photostimulated emission (PSL) and TL emission. The optical absorption measurement indicates that F and V1, V2 centers are formed in the crystals during the γ irradiation process. It was attempted to incorporate a broad band of Ce3+ activator into the narrow band emission of Tb3+ in the KI host without the reduction of emission intensity. Ce3+-co-doped KI and Tb crystals showed a broad band emission due to the d-f transition of Ce3+ and a reduction in the intensity of emission peaks due to the 5D3-7Fj (j=3,4,5,6) transition of Tb3+, when they were excited at 240 nm.These results supported that an effective energy transfer occurs from Tb3+ to Ce3+ in the KI host. Co-doping Ce3+ ions greatly intensified the excitation peak at 260 nm for the emission at 393 nm of Tb3+, which means that more lattice defects, involved in the energy absorption and transfer to Tb3+, are formed by the Ce3+ co-doping. The integrated light intensity is an order of magnitude higher as compared to the undoped samples for similar doses of irradiation and heating rates. The defects generated by irradiation were monitored by optical absorption and TSL Trap parameters for the TL process are calculated and presented.  相似文献   

5.
Plant-isolated compounds, Osthol [7-methoxy-8-(3-methylbut-2-enyl) coumarin], were subjected to modification in the isopentenyl side chain to get an aldehyde of 2-methyl-4 (7-methoxy-2-oxo-2H-chromen-8-yl)-but-2-en-1-al. This modified compound was exposed to γ-radiation produced by 137Cs source at room temperature. Pre- and post-irradiation study was carried out by ultraviolet–visible spectroscopy. The compound shows a sharp absorption peak at 322?nm. This observed absorption band decreases with irradiation up to a certain dose and then increases with a further increase in the radiation dose. This compound exhibits almost a linear response up to 7?Gy. From the optical data analysis, this compound follows indirect allowed transition and the optical gap was found around 3.58?eV. The systematic decrease in the band gap was found with an increase in the radiation dose. Urbach energy is also found to decrease with radiation. This parameter gives a clear indication of the defects and free radical created in the system after irradiation. The present features shown by this compound may be exploited as sensitive dosimeter in 0–7?Gy γ-radiation environment.  相似文献   

6.
Thin films of Ga10Se80Hg10 have been deposited onto a chemically cleaned Al2O3 substrates by thermal evaporation technique under vacuum. The investigated thin films are irradiated by 60Co γ-rays in the dose range of 50–150 kGy. X-ray diffraction patterns of the investigated thin films confirm the preferred crystallite growth occurs in the tetragonal phase structure. It also shows, the average crystallite size increases after γ-exposure, which indicates the crystallinity of the material increases after γ-irradiation. These results were further supported by surface morphological analysis carried out by scanning electron microscope and atomic force microscope which also shows the crystallinity of the material increases with increasing the γ-irradiation dose. The optical transmission spectra of the thin films at normal incidence were investigated in the spectral range from 190 to 1100 nm. Using the transmission spectra, the optical constants like refractive index (n) and extinction coefficient (k) were calculated based on Swanepoel’s method. The optical band gap (Eg) was also estimated using Tauc’s extrapolation procedure. The optical analysis shows: the value of optical band gap of investigated thin films decreases and the corresponding absorption coefficient increases continuously with increasing dose of γ-irradiation.  相似文献   

7.
We have investigated the optical properties of silicon pillars formed by cumulative nanosecond pulsed excimer laser irradiation of single-crystal silicon in vacuum created under different repetition rates. The changes in optical characteristics of silicon pillar were systematically determined and compared as the number of KrF laser shots was increased from 1 to 15,000.The results show that silicon pillar PL curves exhibit a blue band around 430 nm and an ultraviolet band peaking at 370 nm with the vanishing of the green emission at 530 nm. A correlation between the intensity of the blue PL band and the intensity of the Si-O absorption bands has been exploited to explain such emission, whereas, the origin of the ultraviolet band may be attributed to different types of defects in silicon oxide.  相似文献   

8.
The structural and optical properties of RF sputtered Nb2O5 thin films are studied before and after gamma irradiation. The films are subjected to structural and surface morphological analyses by using X-ray (XRD) and field emission scanning electron microscope techniques. In the wavelength range of 300–2000 nm, the optical parameters for amorphous and crystalline Nb2O5 thin films are estimated at differently exposed γ-irradiation doses (0, 50, 100 and 200 kGy). The optical constants, such as optical energy band gap, absorption coefficient, refractive index and oscillators parameters of amorphous and crystalline Nb2O5 thin films are calculated. The optical band gaps of γ-irradiated amorphous and crystalline Nb2O5 thin films are determined. In the non-absorbing region, the real part of the refractive index of amorphous and crystalline Nb2O5 thin films slightly increases with the increase in the exposed γ-irradiation dose.  相似文献   

9.
Abstract

Thermo- and photo-stimulated luminescence are studied for CsI—Tl crystal after the irradiation with the UV light at 80 K. Creation spectrum of the photostimulated luminescence coincides with the D absorption band of Tl+ ions. Nature of the defects created by UV light at low temperatures is discussed basing on the correspondence between the thermostimulated glow curve peaks and thermal evolution of the photostimulation spectra observed after irradiation in the D absorption band. Three bands at 1400, 950 and 580 nm have been observed in the stimulation spectrum at 80 K. The 1400 and 950 nm stimulation bands are presumably explained as the optical transitions in the Tl0 centre forming the spatially correlated defect pair with Vk centre while the 580 nm stimulation band is connected with the unperturbed Tl0 centres. It is concluded that the Tl+ luminescence at low temperature is connected with the electron recombination with the Tl2+ centre.  相似文献   

10.
′ and NBOH). Samples with high OH content exhibit gradual recovery from the absorption band within several minutes after exposure to the KrF laser radiation. The formation of the KrF laser-induced 210 nm absorption band depends on the fictive temperature and on the OH content. Low fictive temperature, as a measure for the number of intrinsic defects, retards E generation at the beginning of intense KrF excimer laser irradiation when the majority of defects are generated from precursor defects. However, for longer irradiation periods with pulse numbers of the order of 105 pulses, a high OH content is the beneficial parameter. The accompanying atomic hydrogen is essential for the suppression of the 210 nm absorption band. This happens by transformation of the E centers into Si-H defects. In contrast to a generally held view, annealing (decreasing of the fictive temperature) of fused silica does not always reduce UV induced defect generation. For example, annealing of the samples in an argon atmosphere causes a significantly higher 210 nm absorption increase during KrF excimer laser irradiation (240000 pulses) compared to nonannealed samples. Two spectroscopic methods to determine the OH content of fused silica were applied: Raman and infrared spectroscopy, which in this work lead to differing results. The energetics of the 210 nm absorption band generation and bleaching is summarized by a diagram explaining the interaction of the 248 nm laser radiation with fused silica. Received: 2 June 1997/Accepted: 13 June 1997  相似文献   

11.
From optical and thermal bleaching experiments it is concluded that the 400 nm absorption band which appears in Al2O3 after γ-irradiation is a composite V band. One of its components is attributed to the V-OH center which also is responsible for a localized vibrational band at 3316 cm-11 analogous to the one observed for the VOH center in MgO. The irradiation also results in electron trapping at Cr3+ impurity ions to produce a band at 227 nm. Annealing at 170°C destroys the V-OH center by releasing holes which convert the Cr2+ to Cr3+ with an attendant thermoluminescence.  相似文献   

12.
Absorption spectra measurements of cerium-doped binary system from barium-borate glasses have been measured. The effects of dopant concentration of CeO2 and Al2O3 in the concentration range 0.54-2.9 and 4.8-9.2 mol%, respectively, and exposed to different irradiation doses have been measured in the range 1-7 eV and the result have been interpreted in terms of structural concepts. The radiation-induced broad band at 2.25-1.88 eV in the base glass is observed to be suppressed by the presence of cerium due to the transformation of Ce4+ to Ce3+. The released electrons are then used to annihilate positive holes responsible for this band. The resolution of the observed absorption spectra show two to seven induced bands depending on the glass composition. Absorption spectra of the irradiated binary glass system are found to be controlled by the cerium concentration. From the absorption edge studies, the values of optical band gap Eopt and Urbach energy ΔE have been evaluated. The oxidoreduction (redox) reaction Ce3+/Ce4+ is assumed to be related to the glass basicity and the possible complex-ion formation. The oxygen ion activity (O2−) is believed to be related to the basicity and to the possible oxygen ion formation in the glass melt, and the redox equilibrium is shifted toward the reduced state.  相似文献   

13.
We report a study on the SHI induced modifications on structural and optical properties of ZnO/PMMA nanocomposite films. The ZnO nanoparticles were synthesized by the chemical route using 2-mercaptoethanol as a capping agent. The structure of ZnO nanoparticles was confirmed by XRD, SEM and TEM. These ZnO nanoparticles were dispersed in the PMMA matrix to form ZnO/PMMA nanocomposite films by the solution cast method. These ZnO/PMMA nanocomposite films were then irradiated by swift heavy ion irradiation (Ni8+ ion beam, 100 MeV) at a fluence of 1×1011 ions/cm2. The nanocomposite films were then characterized by XRD, UV-vis absorption spectroscopy and photoluminescence spectroscopy. As revealed from the absorption spectra, absorption edge is not changed by the irradiation but the optical absorption is increased. Enhanced green luminescence at about 527 nm and a less intense blue emission peak around 460 nm were observed after irradiation with respect to the pristine ZnO/PMMA nanocomposite film.  相似文献   

14.
The defects produced in KBr:Tl+ crystals during x-irradiation at 77 K were studied using thermoluminescence (TL), thermally stimulated currents (TSC), and absorption and emission spectra. Three main glow peaks at 165, 193 and 258 K were observed both in the TL and in the TSC curves. A variety of irradiation induced absorption bands were observed in the UV, visible and infrared up to about 2 microns. The 165 K TL peak was found to emit only the 440 nm band assigned to thallium dimers, while the peaks at 193 and 258 K exhibited the UV bands at 310 and 365 nm as well as the 440 nm band.The defects produced during the irradiation were the Vk hole center, the Tl° and the Tl+2 electron centers. Smaller concentrations of Tl2+ and (Tl+)+2 centers were also produced.An analysis of the results including measurements on lightly and heavily doped crystals enabled to draw conclusions on the nature of the defects and on the recombination processes involved. A close correlation has been found between the temperatures at which changes in the various absorption bands take place and the temperatures of the TL peaks. The analysis enabled also a full classification of the absorption bands.  相似文献   

15.
We investigated UV absorption changes induced in 3.5 mol% Ge-doped fused silica at high-intensity (∼1011-1013 W/cm2) femtosecond (130 fs) irradiation at 267, 400 and 800 nm. We have shown that the induced spectra in the region 190-300 nm are similar in all three cases. At 800 nm irradiation, in addition to the UV absorption changes, we observed small-scale damage due to self-focusing. This damage appears when the incident pulse fluence value of about 1 J/cm2 (pulse intensity of about 7.5 × 1012 W/cm2) is overcome, while the threshold for the induced absorption changes is twice lower.  相似文献   

16.
The optical absorption (OA) and photoluminescence (hereafter referred to as luminescence) studies were made on CaF2:Dy:Pb:Na single crystals (Dy—0.005 at%, Pb—0.188 at% and Na—0.007 at%) before and after γ-irradiation. The unirradiated crystal exhibited a strong OA band around 6.36 eV attributed to the ‘A’ band absorption of Pb2+ ions. The γ-irradiated crystal exhibited OA bands around 2.06, 3.28, 3.75 (broad shoulder) and 2.48 eV. The first three bands could be tentatively attributed to MNa centre when compared with that of the coloured CaF2:Na. The origin of 2.48 eV band was not explicitly known. Luminescence emission and excitation of Pb2+ and Dy3+ ions were negligible in the unirradiated crystal. Irradiated crystal exhibited a strong excitation spectrum with overlapping bands, due to different colour centres, in the UV-vis region for the 2.15 eV emission characteristic of Dy3+ ion. When excited, the absorbed energy (may be a part) was transferred from a colour centre to nearby Dy3+ ions and Dy3+ characteristic emission was observed. Exciting the irradiated crystal around 3.28 eV yielded emission at 2.56, 2.15 and 1.76 eV. The first two emission bands were due to Dy3+ ions. The excitation spectrum for the 1.76 eV emission showed two prominent bands around 2.02 and 3.08 eV and hence the emission was attributed to the MNa centre. The luminescence mechanism was described.  相似文献   

17.
The second-order optical nonlinearity of poled Ge25Sb10S65 chalcogenide glass was found to be 40-50% larger after femtosecond laser irradiation. The highest χ(2) was 11.4 pm/V. Raman spectral change indicated that centrosymmetric defects were created by fs light. These defects promoted the third-order optical nonlinearity of the glass and as a result, its second-order nonlinearity was also enhanced. The study shows that fs laser modification is an effective method of increasing the optical nonlinearity of photonic materials.  相似文献   

18.
Chalcogenide glasses are interesting materials due to their infrared transmitting properties and photo induced effects exhibited by them. Thin films with thickness of 3000 Å of the glasses Se75S25−xCdx with x=6, 8 and 10 at% prepared by melt quench technique were evaporated by thermal evaporation onto glass substrates under a vacuum of 10−6 Torr. The optical constants (absorption coefficient, refractive index and extinction coefficient) of as-prepared and annealed films have been studied as a function of photon energy in the wave length region 400-1000 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been found that the absorption coefficient and optical band gap increase with increasing annealing temperatures. The refractive index (n) and the extinction coefficient (k) were observed to decrease with increasing annealing temperature.  相似文献   

19.
This paper reports on different physical and optical properties of Nd3+-doped soda-lime silicate glass. The glasses containing Nd3+ in (65−x)SiO2:25Na2O:10CaO:xNd2O3 (where x=0.0-5.0 mol%) have been prepared by the melt-quenching method. In order to understand the role of Nd2O3 in these glasses the density, molar volume, refractive index and optical absorption were investigated. The results show that the density and molar volume of the glasses increase with an increase in Nd2O3 concentration and consequently generate more non-bridging oxygen (NBOs) into glass matrix. The optical absorption spectra were measured in the wavelength range from 300 to 700 nm and the optical band gaps were determined. It was found that the optical band gap decreases with an increase in Nd2O3 concentration. On the basis of the measured values of density and refractive index, the Nd3+ ion concentration in glasses, the polarizability of oxide ions and optical basicity were theoretically determined.  相似文献   

20.
Tin sulfide (SnS) is a material of interest for use as an absorber in low cost solar cells. Single crystals of SnS were grown by the physical vapor deposition technique. The grown crystals were characterized to evaluate the composition, structure, morphology, electrical and optical properties using appropriate techniques. The composition analysis indicated that the crystals were nearly stoichiometric with Sn-to-S atomic percent ratio of 1.02. Study of their morphology revealed the layered type growth mechanism with low surface roughness. The grown crystals had orthorhombic structure with (0 4 0) orientation. They exhibited an indirect optical band gap of 1.06 eV and direct band gap of 1.21 eV with high absorption coefficient (up to 103 cm−1) above the fundamental absorption edge. The grown crystals were of p-type with an electrical resistivity of 120 Ω cm and carrier concentration 1.52×1015 cm−3. Analysis of optical absorption and diffuse reflectance spectra showed the presence of a wide absorption band in the wavelength range 300-1200 nm, which closely matches with a significant part of solar radiation spectrum. The obtained results were discussed to assess the suitability of the SnS crystal for the fabrication of optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号